This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091046 Stirling transform of first differences of Bell numbers (A005493), if offset zero: a(n) = sum_{k=1..n} A008277(n,k)*A005493(k). 0
 1, 4, 20, 119, 817, 6338, 54707, 519184, 5366097, 59934937, 718748131, 9203953921, 125268224954, 1804750726306, 27426230051634, 438260834123607, 7343677070172330, 128716143768613600, 2354633702684629141 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equals A039810 * [1,2,3,...], i.e. the square of the Stirling2 triangle and the natural number vector. - Gary W. Adamson, Jan 31 2008 LINKS FORMULA Egf: (exp(exp(x)-1)-1)*exp(exp(exp(x)-1)-1) Representation as an infinite sum (Dobinski-type relation): a(n)=exp(exp(-1)-1)*sum(p^n*((sum((stirling2(p+1, k)-stirling2(p, k))*exp(-k), k=1..p)+exp(-(p+1)))/p!), p=1..infinity), n=1, 2.... CROSSREFS Cf. A005493, A039810. Sequence in context: A190194 A127088 A128236 * A101055 A208232 A013197 Adjacent sequences:  A091043 A091044 A091045 * A091047 A091048 A091049 KEYWORD nonn AUTHOR Karol A. Penson, Dec 15 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .