OFFSET
1,2
COMMENTS
a(n-1,k)= S2_{k,k}(n,k+1)/(k*k!), n>=2, 1<=k<= n-1, with S2_{k,k} the r=k,s=k Stirling2 array S_{k,k} of the Blasiak et al. reference.
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
LINKS
W. Lang, First 9 rows.
FORMULA
a(n, k)=(k!^(n-k+1))*((k+1)^(n-k+1)-1)/(k*k!) if n >= k >= 1, else 0.
G.f. column k (without leading zeros): 1/((1-(k+1)!*x)*(1-k!*x)) = (1/(1-(k+1)!*x) - 1/(1-k!*x))/(k*k!*x).
EXAMPLE
[1];[3,1];[7,8,1];[15,52,30,1];...
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jan 23 2004
STATUS
approved