|
|
A090991
|
|
Number of meaningful differential operations of the n-th order on the space R^6.
|
|
8
|
|
|
6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338, 126491972
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Apparently a(n) = A054886(n+2) for n=1..1000. - Georg Fischer, Oct 06 2018
|
|
LINKS
|
Indranil Ghosh, Table of n, a(n) for n = 1..4772
Tanya Khovanova, Recursive Sequences
B. Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
Branko Malesevic, Some combinatorial aspects of differential operation compositions on space R^n, arXiv:0704.0750 [math.DG], 2007.
Index entries for linear recurrences with constant coefficients, signature (1,1).
|
|
FORMULA
|
a(k+4) = 3*a(k+2) - a(k).
a(k) = 2*Fibonacci(k+3).
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = a(n-1) + a(n-2), n>2, where a(1)=6, a(2)=10.
G.f.: 2*x*(3+2*x)/(1-x-x^2). (End)
|
|
MAPLE
|
NUM := proc(k :: integer) local i, j, n, Fun, Identity, v, A; n := 6; # <- DIMENSION Fun := (i, j)->piecewise(((j=i+1) or (i+j=n+1)), 1, 0); Identity := (i, j)->piecewise(i=j, 1, 0); v := matrix(1, n, 1); A := piecewise(k>1, (matrix(n, n, Fun))^(k-1), k=1, matrix(n, n, Identity)); return(evalm(v&*A&*transpose(v))[1, 1]); end:
|
|
MATHEMATICA
|
CoefficientList[Series[2*(3+2z)/(1-z-z^2), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
|
|
PROG
|
(GAP) a:=[6, 10];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Oct 06 2018
(PARI) my(x='x+O('x^40)); Vec(2*x*(3+2*x)/(1-x-x^2)) \\ G. C. Greubel, Feb 02 2019
(MAGMA) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 2*x*(3+2*x)/(1-x-x^2) )); // G. C. Greubel, Feb 02 2019
(Sage) (2*(3+2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 02 2019
|
|
CROSSREFS
|
Cf. A055389, A068922, A078642, A090989-A090995.
Essentially the same as A006355.
Sequence in context: A302748 A020741 A274287 * A019533 A053301 A262542
Adjacent sequences: A090988 A090989 A090990 * A090992 A090993 A090994
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Branko Malesevic, Feb 29 2004
|
|
STATUS
|
approved
|
|
|
|