login
A090967
Given the sequence of the sums of the divisors of the semiprimes, this is the subsequence where each sum is an even number.
3
4, 6, 8, 10, 10, 14, 12, 16, 14, 20, 16, 22, 18, 26, 18, 22, 32, 20, 34, 24, 40, 28, 24, 22, 44, 46, 26, 50, 24, 34, 36, 56, 30, 26, 62, 64, 42, 28, 70, 36, 46, 30, 74, 48, 38, 76, 30, 52, 82, 32, 86, 34, 44, 58, 92, 48, 34, 100, 64, 36, 50, 104, 66, 106
OFFSET
1,1
COMMENTS
This is the sequence of the sums of the divisors of the n-th semiprime, with all the odd entries removed. Goldbach's Conjecture states that this sequence will include all even integers greater than or equal to 4. This sequence is in some ways the order in which Goldbach's Conjecture is satisfied.
EXAMPLE
a(7)=12 since the seventh semiprime whose two factors sum to an even number is 35, since 35=5*7 and 5+7=12.
MATHEMATICA
PrimeFactorExponentsAdded[n_] := Plus @@ Flatten[Table[ #[[2]], {1}] & /@ FactorInteger[n]]; PrimeFactorsAdded[n_] := Plus @@ Flatten[Table[ #[[1]]*#[[2]], {1}] & /@ FactorInteger[n]]; SumOfFactorsOfSemiprimes[n_] := Table[PrimeFactorsAdded[Part[Select[Range[n*n], PrimeFactorExponentsAdded[ # ] == 2 &], a]], {a, 1, n}]; GenerateA090967[n_] := Select[SumOfFactorsOfSemiprimes[n], Mod[ #, 2] == 0 &]; GenerateA090967[100] would give the first 100 terms of the sequence.
CROSSREFS
Sequence in context: A167146 A020891 A340848 * A349707 A272475 A184016
KEYWORD
nonn
AUTHOR
Ryan Witko (witko(AT)nyu.edu), Feb 27 2004
STATUS
approved