login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090932 a(n) = n! / 2^floor(n/2). 2
1, 1, 1, 3, 6, 30, 90, 630, 2520, 22680, 113400, 1247400, 7484400, 97297200, 681080400, 10216206000, 81729648000, 1389404016000, 12504636144000, 237588086736000, 2375880867360000, 49893498214560000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Number of permutations of the n-th row of Pascal's triangle.

Can be seen as the multiplicative equivalent to the generalized pentagonal numbers. - Peter Luschny, Oct 13 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

R. Florez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12 (2012), no. 1, 83-96.

FORMULA

a(n) = binomial(n-1, 2) * a(n-2).

E.g.f.: (1+x)/(1-1/2*x^2).

E.g.f.: G(0)  where G(k) = 1 + x/(1 - x/(x + 2/G(k+1) )) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 27 2012

G.f.: G(0), where G(k)= 1 + (2*k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 28 2013

a(n) = (n+1)!/A093968(n+1). - Anton Zakharov, Jul 25 2016

a(n) ~ sqrt(2*Pi*n)*exp(-n)*n^n/2^floor(n/2). - Ilya Gutkovskiy, Jul 25 2016

From Rigoberto Florez, Apr 07 2017: (Start)

if n=2k, n! / 2^k = t(1)t(3)t(5)...t(2k-1),

if n=2k+1, n! / 2^k = t(2)t(4)t(6)...t(2k),

if n=2k, n! / 2^k = (t(k)-t(0))*(t(k)-t(1))*...*(t(k)-t(k-1)),

with t(i)= i-th triangular number. (End)

EXAMPLE

From Rigoberto Florez, Apr 07 2017: (Start)

a(5) = 5!/2^2 = 120/4 = 30.

a(6) = 6!/2^3 = 1*6*15 = 90.

a(7) = 7!/2^3 = 3*10*21 = 630. (End)

MAPLE

a:= n-> n!/2^floor(n/2): seq (a(n), n=0..40);

MATHEMATICA

Table[n!/2^Floor[n/2], {n, 0, 21}] (* Michael De Vlieger, Jul 25 2016 *)

PROG

(PARI) a(n)=n!/2^floor(n/2)

(MAGMA) [Factorial(n) / 2^Floor(n/2): n in [0..25]]; // Vincenzo Librandi, May 14 2011

(Sage)

@CachedFunction

def A090932(n):

    if n == 0 : return 1

    fact = n//2 if is_even(n) else n

    return fact * A090932(n-1)

[A090932(n) for n in (0..21)] # Peter Luschny, Oct 13 2012

CROSSREFS

Cf. A052277, A007019.

The function appears in several expansions: A009775, A046979, A046981, A007415, A007452.

Sequence in context: A125521 A211168 A215294 * A280981 A265376 A318431

Adjacent sequences:  A090929 A090930 A090931 * A090933 A090934 A090935

KEYWORD

nonn

AUTHOR

Jon Perry, Feb 26 2004

EXTENSIONS

Edited by Ralf Stephan, Sep 07 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)