This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090932 a(n) = n! / 2^floor(n/2). 2
 1, 1, 1, 3, 6, 30, 90, 630, 2520, 22680, 113400, 1247400, 7484400, 97297200, 681080400, 10216206000, 81729648000, 1389404016000, 12504636144000, 237588086736000, 2375880867360000, 49893498214560000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of permutations of the n-th row of Pascal's triangle. Can be seen as the multiplicative equivalent to the generalized pentagonal numbers. - Peter Luschny, Oct 13 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 R. Florez and L. Junes, A relation between triangular numbers and prime numbers, Integers 12 (2012), no. 1, 83-96. FORMULA a(n) = binomial(n-1, 2) * a(n-2). E.g.f.: (1+x)/(1-1/2*x^2). E.g.f.: G(0)  where G(k) = 1 + x/(1 - x/(x + 2/G(k+1) )) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 27 2012 G.f.: G(0), where G(k)= 1 + (2*k+1)*x/(1 - x*(k+1)/(x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 28 2013 a(n) = (n+1)!/A093968(n+1). - Anton Zakharov, Jul 25 2016 a(n) ~ sqrt(2*Pi*n)*exp(-n)*n^n/2^floor(n/2). - Ilya Gutkovskiy, Jul 25 2016 From Rigoberto Florez, Apr 07 2017: (Start) if n=2k, n! / 2^k = t(1)t(3)t(5)...t(2k-1), if n=2k+1, n! / 2^k = t(2)t(4)t(6)...t(2k), if n=2k, n! / 2^k = (t(k)-t(0))*(t(k)-t(1))*...*(t(k)-t(k-1)), with t(i)= i-th triangular number. (End) EXAMPLE From Rigoberto Florez, Apr 07 2017: (Start) a(5) = 5!/2^2 = 120/4 = 30. a(6) = 6!/2^3 = 1*6*15 = 90. a(7) = 7!/2^3 = 3*10*21 = 630. (End) MAPLE a:= n-> n!/2^floor(n/2): seq (a(n), n=0..40); MATHEMATICA Table[n!/2^Floor[n/2], {n, 0, 21}] (* Michael De Vlieger, Jul 25 2016 *) PROG (PARI) a(n)=n!/2^floor(n/2) (MAGMA) [Factorial(n) / 2^Floor(n/2): n in [0..25]]; // Vincenzo Librandi, May 14 2011 (Sage) @CachedFunction def A090932(n):     if n == 0 : return 1     fact = n//2 if is_even(n) else n     return fact * A090932(n-1) [A090932(n) for n in (0..21)] # Peter Luschny, Oct 13 2012 CROSSREFS Cf. A052277, A007019. The function appears in several expansions: A009775, A046979, A046981, A007415, A007452. Sequence in context: A125521 A211168 A215294 * A280981 A265376 A318431 Adjacent sequences:  A090929 A090930 A090931 * A090933 A090934 A090935 KEYWORD nonn AUTHOR Jon Perry, Feb 26 2004 EXTENSIONS Edited by Ralf Stephan, Sep 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)