login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090902 a(n) = floor((product of first n triangular numbers)/(sum of first n factorials)). 2
1, 1, 2, 5, 17, 64, 268, 1236, 6286, 35031, 212401, 1392489, 9817398, 74078419, 595722994, 5086611025, 45961503660, 438168680119, 4395396953168, 46281082011630, 510378647082537, 5882795810558767, 70740717281280862, 885944239324190839, 11537420341016416104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Floor(Sum (prod(n))/(Product(Sum (n)). Asymptotic formula?

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..505

FORMULA

a(n) = floor(A000178(n)^(1/n)).

EXAMPLE

a(4) = floor(((1)*(1+2)*(1+2+3)*(1+2+3+4))/((1)+(1*2)+(1*2*3)+(1*2*3*4))) = 5.

MATHEMATICA

Do[Print[Floor[ Product[k*(k+1)/2, {k, 1, n}] / Sum[k!, {k, 1, n}] ]], {n, 1, 20}] (* Ryan Propper, Jun 18 2005 *)

Module[{nn=20, trs, facs}, trs=Rest[FoldList[Times, 1, Accumulate[Range[ nn]]]]; facs = Accumulate[Range[nn]!]; Floor/@(trs/facs)] (* Harvey P. Dale, Jul 23 2014 *)

PROG

(PARI) {a(n) = (prod(j=1, n, binomial(j+1, 2))/sum(k=1, n, k!))\1};

for(n=1, 25, print1(a(n), ", ")) \\ G. C. Greubel, Feb 05 2019

(MAGMA) [Floor((&*[Binomial(j+1, 2): j in [1..n]])/(&+[Factorial(k): k in [1..n]])): n in [1..25]]; // G. C. Greubel, Feb 05 2019

(Sage) [floor(prod(binomial(j+1, 2) for j in (1..n))/sum(factorial(k) for k in (1..n))) for n in (1..25)] # G. C. Greubel, Feb 05 2019

CROSSREFS

Cf. A090901.

Sequence in context: A003456 A109084 A217596 * A150012 A150013 A123166

Adjacent sequences:  A090899 A090900 A090901 * A090903 A090904 A090905

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Dec 12 2003

EXTENSIONS

More terms from Ryan Propper, Jun 18 2005

More terms from Harvey P. Dale, Jul 23 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)