The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090892 Solutions x to equation floor(x*r*floor(x/r)) = floor(x/r*floor(x*r)) when r = sqrt(2). 1
 0, 1, 2, 3, 6, 9, 10, 12, 13, 16, 17, 19, 20, 23, 26, 27, 30, 33, 34, 36, 37, 40, 43, 44, 47, 50, 51, 53, 54, 57, 58, 60, 61, 64, 67, 68, 70, 71, 74, 75, 77, 78, 81, 84, 85, 88, 91, 92, 94, 95, 98, 99, 101, 102, 105, 108, 109, 111, 112, 115, 116, 118, 119, 122, 125, 126 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Terms >= 2 give numbers n satisfying: floor(sqrt(2)*n) is even. - Benoit Cloitre, May 27 2004 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 FORMULA It seems that a(n) = 2*n + o(n); conjecture : a(n) = 2*n + O(1). MATHEMATICA With[{r = Sqrt[2]}, Select[Range[0, 150], Floor[#*r*Floor[#/r]] == Floor[(#/r)*Floor[#*r]] &]] (* G. C. Greubel, Feb 06 2019 *) PROG (PARI) r=sqrt(2); for(n=0, 150, if(floor(n*r*floor(n/r))==floor(n/r*floor(n*r)), print1(n, ", "))) \\ G. C. Greubel, Feb 06 2019 CROSSREFS Sequence in context: A328727 A032938 A188323 * A120752 A236759 A134695 Adjacent sequences:  A090889 A090890 A090891 * A090893 A090894 A090895 KEYWORD nonn AUTHOR Benoit Cloitre, Feb 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 05:26 EDT 2021. Contains 343105 sequences. (Running on oeis4.)