

A090866


Primes p == 1 (mod 4) such that (p1)/4 is prime.


15



13, 29, 53, 149, 173, 269, 293, 317, 389, 509, 557, 653, 773, 797, 1109, 1229, 1493, 1637, 1733, 1949, 1997, 2309, 2477, 2693, 2837, 2909, 2957, 3413, 3533, 3677, 3989, 4133, 4157, 4253, 4349, 4373, 4493, 4517, 5189, 5309, 5693, 5717, 5813, 6173, 6197
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Same as Chebyshev's subsequence of the primes with primitive root 2, because Chebyshev showed that 2 is a primitive root of all primes p = 4*q+1 with q prime. If the sequence is infinite, then Artin's conjecture ("every nonsquare positive integer n is a primitive root of infinitely many primes q") is true for n = 2.  Jonathan Sondow, Feb 04 2013


REFERENCES

Albert H. Beiler: Recreations in the theory of numbers. New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000
Index entries for sequences related to Artin's conjecture


FORMULA

a(n) = 4*A023212(n) + 1.


MATHEMATICA

Select[Prime[Range[1000]], Mod[#, 4]==1 && PrimeQ[(#1)/4] &] (* G. C. Greubel, Feb 08 2019 *)


PROG

(MAGMA) f:=[n: n in [1..2000]  IsPrime(n) and IsPrime(4*n+1)]; [4*f[n] + 1: n in [1..50]]; // G. C. Greubel, Feb 08 2019
(PARI) isok(p) = isprime(p) && !frac(q=(p1)/4) && isprime(q); \\ Michel Marcus, Feb 09 2019


CROSSREFS

Cf. A001122, A005385, A005596, A023212, A221981, A222008.
Sequence in context: A244637 A162579 A286658 * A098062 A094481 A045637
Adjacent sequences: A090863 A090864 A090865 * A090867 A090868 A090869


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Feb 12 2004


STATUS

approved



