%I #9 Oct 06 2015 18:30:33
%S 1,1,2,3,5,9,10,20,22,40,51,67,114,126,203,230,354,468,571,885,908,
%T 1486,1674,2250,3045,3586,5322,5418,8186,9560,12234,16341,17976,26970,
%U 27912,38435,46383,57024,76794,80805,116376,125205,165914,201580,232352
%N Let A denote the sequence; A is equal to the union of the self-convolutions A^2 and A^3, with terms in ascending order by size.
%C The occurrences of the terms of A^3 in A is given by A090846.
%C The self-convolution square equals A222082.
%C The self-convolution cube equals A222083.
%C Not equal to A262990.
%H Paul D. Hanna, <a href="/A090845/b090845.txt">Table of n, a(n) for n = 0..10000</a>
%e A={1,1,2,3,5,9,10,20,22,40,51,...} since A is the sorted union of:
%e A^2={1,2,5,10,20,40,67,126,203,354,571,908,1486,2250,3586,...} and
%e A^3={1,3,9,22,51,114,230,468,885,1674,3045,5418,9560,16341,...}.
%o (PARI) {a(n)=local(A=[1,1]);for(i=1,#binary(3*n+1),A=vecsort(concat(Vec(Ser(A)^2),Vec(Ser(A)^3))));A[n+1]}
%o for(n=0,60,print1(a(n),", "))
%Y Cf. A090846, A222082 (A^2), A222083 (A^3).
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 09 2003