OFFSET
0,2
COMMENTS
Sum of n-th row of triangle of powers of 10: 1; 1 10 1; 1 10 100 10 1; 1 10 100 1000 100 10 1; ... - Philippe Deléham, Feb 23 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
L. He, X. Liu and G. Strang, Trees with Cantor Eigenvalue Distribution, Studies in Applied Mathematics 110 (2), 123-138, 2003.
Index entries for linear recurrences with constant coefficients, signature (11,-10).
FORMULA
a(n) = (11*10^n - 2)/9.
G.f.: (1+x)/((1-x)*(1-10*x)). - Zerinvary Lajos, Feb 25 2009
a(n) = 10*a(n-1) + 2, a(0) = 1. - Philippe Deléham, Feb 23 2014
a(n) = 11*a(n-1) - 10*a(n-2), a(0) = 1, a(1) = 12. - Philippe Deléham, Feb 23 2014
a(n) = Sum_{k=0..n} A112468(n,k)*11^k. - Philippe Deléham, Feb 23 2014
EXAMPLE
a(0) = 1;
a(1) = 1 + 10 + 1 = 12;
a(2) = 1 + 10 + 100 + 10 + 1 = 122;
a(3) = 1 + 10 + 100 + 1000 + 100 + 10 + 1 = 1222; etc. - Philippe Deléham, Feb 23 2014
MAPLE
g:=(1+z)/((1-z)* (1-10*z)): gser:=series(g, z=0, 43): seq((coeff(gser, z, n)), n=0..24); # Zerinvary Lajos, Feb 25 2009
MATHEMATICA
Table[(11 10^n - 2)/9, {n, 0, 20}] (* Vincenzo Librandi, Feb 24 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 09 2003
STATUS
approved