login
A090804
Numerators in an asymptotic expansion of Ramanujan.
6
2, -4, 8, 16, -8992, -334144, 698752, 23349012224, -1357305243136, -6319924923392, 8773495082018816, 49004477022654464, -1709650943378038784, -480380831834367035260928, 88481173388026066736939008, 660883915180095254454665216
OFFSET
0,1
COMMENTS
2^(n+1) divides a(n). - Peter Luschny, Nov 05 2015
REFERENCES
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.
LINKS
J. D. Buckholtz, Concerning an approximation of Copson, Proc. Amer. Math. Soc., 14 (1963), 564-568.
K. P. Choi, On the medians of gamma distributions and an equation of Ramanujan, Proceedings of the American Mathematical Society 121:1 (May, 1994), pp. 245-251.
J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [From N. J. A. Sloane, Jun 23 2011]
Cormac O'Sullivan, Ramanujan's approximation to the exponential function and generalizations, arXiv:2205.08504 [math.NT], 2022.
FORMULA
Define t_n by Sum_{k=0..n-1} n^k/k! + t_n*n^n/n! = exp(n)/2; then t_n ~ 1/3 + 4/(135*n) - 8/(2835*n^2) + ...
Integral_{0..infinity} exp(-x)*(1+x/n)^n dx = exp(n)*Gamma(n+1)/(2*n^n) + 2/3 - 4/(135*n) + 8/(2835*n^2) + 16/(8505*n^3) - 8992/(12629925*n^4) + ...
From Vladimir Reshetnikov, Nov 09 2015: (Start)
Numerators/denominators: A090804(n)/A065973(n) = 0^n + 2^n * (3*n+2)! / (2*n+1)! * Sum_{i=1..2*n+1} Sum_{j=1..i} Sum_{k=1..j} (-1)^k * 2^i * k^(2*n+i+j+1) * C(2*n+1,i) * C(i,j) * C(j,k) / ((2*n+i+j+1)! * (n+i+1)), where C(n,k) = A007318(n,k) are binomial coefficients.
A090804(n)/A065973(n) = 0^n + 2^n * (3*n+2)! * Sum_{i=1..2*n+1} Sum_{j=1..i} (-1)^j * 2^i * stirling2(2*n+i+j+1,j) / ((2*n+i+j+1)! * (2*n-i+1)! * (i-j)! * (n+i+1)).
(End)
EXAMPLE
2/3, -4/135, 8/2835, 16/8505, -8992/12629925, -334144/492567075, 698752/1477701225, ...
MAPLE
# Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
a[1]:=1;
M:=20;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k], k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n], n=1..M)]; # This gives A005447/A005446
s2:=[seq(2^(n+1)*(n+1)!*a[2*n+2], n=0..M/2)]; # This gives A090804/A065973
# minor corrections by Peter Luschny, Nov 05 2015
MATHEMATICA
Numerator@Table[(n+1)! SeriesCoefficient[-(ProductLog[-1, -Exp[-x^2-1]] + ProductLog[-Exp[-x^2-1]] + 1)/(2 x^2), {x, 0, 2n}, Assumptions -> x>0], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 09 2015 *)
Numerator@Table[KroneckerDelta[n] + 2^n (3n+2)! Sum[((-1)^j 2^i StirlingS2[2n+i+j+1, j])/((2n+i+j+1)! (2n-i+1)! (i-j)! (n+i+1)), {i, 1, 2n+1}, {j, 1, i}], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 09 2015 *)
PROG
(PARI) {a(n) = my(A, m); if( n<1, n==0, n++; A = vector(m=2*n, k, 1); for(k=2, m, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k + 1)); numerator(A[m] * 2^n * n!))}; /* Michael Somos, Jun 09 2004 */
CROSSREFS
Cf. A065973 (denominators), A005446, A005447, A264148.
Sequence in context: A346644 A164312 A068806 * A342773 A080281 A172446
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Feb 11 2004
EXTENSIONS
a(0) corrected by Peter Luschny, Nov 05 2015
STATUS
approved