login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090770 2^(n^2+2n+1)*Product_{j=1..n} (4^j-1). 7
2, 48, 23040, 185794560, 24257337753600, 50821645356918374400, 1704875112338069448032256000, 915241991059360703024740763172864000, 7861748876453505095791592854589753555681280000, 1080506416218846625176535970968094253434513802154475520000, 2376056471052200653607636735377527394627947719754523173734842368000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4). This is the sequence obtained by (illegally) setting p = 2.

LINKS

Table of n, a(n) for n=0..10.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

CROSSREFS

Cf. A001309, A003956.

Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7).

A bisection of A003053, cf. A003923.

Sequence in context: A053290 A056989 A230886 * A081960 A123742 A203311

Adjacent sequences:  A090767 A090768 A090769 * A090771 A090772 A090773

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 09:14 EDT 2020. Contains 336480 sequences. (Running on oeis4.)