%I #7 Oct 04 2012 10:28:49
%S 28,460992,18594942105600,1801630225452634420838400,
%T 419114092659655895262507217606410240000,
%U 234094442205343557204838431982679810784254737891983360000,313936710456644712932526713436974934772339799367593873556694922893983744000000,1010846620958915523772074873493863525346718205399610275113597795065777917926818948851860049494016000000
%N 4*7^(n^2+2n+1)*Product_{j=1..n} (49^j-1).
%C The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4).
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%Y Cf. A001309, A003956.
%Y Cf. A092299 and A092301 (p=3), A092300 and A089989 (p=5), A090768 and A090769 (p=7), A090770 (p=2, although this is the wrong formula in that case).
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Feb 10 2004