%I #30 Mar 08 2022 20:44:27
%S 2,22,482,10582,232322,5100502,111978722,2458431382,53973511682,
%T 1184958825622,26015120652002,571147695518422,12539234180753282,
%U 275292004281053782,6043884860002429922,132690174915772404502
%N a(n) = 22*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 22.
%H Indranil Ghosh, <a href="/A090730/b090730.txt">Table of n, a(n) for n = 0..743</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (22,-1).
%F a(n) = p^n + q^n, where p = 11 + 2*sqrt(30) and q = 11 - 2*sqrt(30). - _Tanya Khovanova_, Feb 06 2007
%F G.f.: (2-22*x)/(1-22*x+x^2). - _Philippe Deléham_, Nov 18 2008
%F a(n) = 2*A077422(n). - _R. J. Mathar_, Sep 27 2014
%t a[0] = 2; a[1] = 22; a[n_] := 22a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* _Robert G. Wilson v_, Jan 30 2004 *)
%t LinearRecurrence[{22,-1},{2,22},20] (* _Harvey P. Dale_, Mar 07 2018 *)
%o (Sage) [lucas_number2(n,22,1) for n in range(0,20)] # _Zerinvary Lajos_, Jun 26 2008
%Y Cf. A008951, A016005, A001613, A077422.
%K easy,nonn
%O 0,1
%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004