This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090727 a(n) = 16a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 16. 2
 2, 16, 254, 4048, 64514, 1028176, 16386302, 261152656, 4162056194, 66331746448, 1057145886974, 16848002445136, 268510893235202, 4279326289318096, 68200709735854334, 1086932029484351248, 17322711762013765634, 276076456162735898896 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Numbers n such that (n^2-4)/7 is a square. - Colin Barker, Mar 17 2014 LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (16,-1). FORMULA a(n) = (8+sqrt(63))^n + (8-sqrt(63))^n. a(n)^2 = a(2n) + 2. G.f.: (2-16*x)/(1-16*x+x^2). - Philippe Deléham, Nov 02 2008 a(n) = 2 * A001081(n). - R. J. Mathar, Nov 30 2008 MATHEMATICA a[0] = 2; a[1] = 16; a[n_] := 16a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *) LinearRecurrence[{16, -1}, {2, 16}, 20] (* T. D. Noe, Mar 17 2014 *) PROG (Sage) [lucas_number2(n, 16, 1) for n in xrange(0, 20)] # Zerinvary Lajos, Jun 26 2008 CROSSREFS Cf. A080246. Sequence in context: A009833 A009044 A019318 * A108242 A140307 A114039 Adjacent sequences:  A090724 A090725 A090726 * A090728 A090729 A090730 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 18 2004 EXTENSIONS More terms from Robert G. Wilson v, Jan 30 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 19 10:50 EST 2018. Contains 318246 sequences. (Running on oeis4.)