OFFSET
1,2
COMMENTS
A word l_0...l_n is called a palindrome if l_i=l_{n-i} for all i<=n.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..16384
A. Baababov, A "Pentium" is good but a mind is better, Kvant 4-5 (1999), 38-42. (in Russian)
O. V. Ravsky, On the palindromic decomposition of binary words, arXiv:1004.1278 [math.CO], 2010; Journal of Automata, Languages and Combinatorics, 8, #1 (2003), p. 71-74.
FORMULA
a(n) = floor(n/6) + floor((n+4)/6) + 1 for n<>11 and a(11)=5.
MATHEMATICA
Array[Boole[# == 11] + Floor[#/6] + Floor[(# + 4)/6] + 1 &, 87] (* Michael De Vlieger, Jan 23 2018 *)
PROG
(PARI) a(n)=if(n==11, 5, floor(n/6)+floor((n+4)/6)+1); \\ Joerg Arndt, Jan 21 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Sasha Ravsky (oravsky(AT)mail.ru), Jan 12 2004
EXTENSIONS
More terms from Joerg Arndt, Jan 21 2018
STATUS
approved