OFFSET
0,3
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..135
FORMULA
a(n) = -G(2n+1)/(2n+1) where G(k) is the k-th Genocchi number of first kind (A001469).
a(n) = A002425(2n+1).
a(n) = A012853(n)/2^(4n+1).
a(n) = abs(A012670(n)/2^(6n+1)).
E.g.f.: (sec(x/2)^2 + sech(x/2)^2)/2 = Sum_{k>=1} a(k)*x^(4k)/(4k)!. - Michael Somos, Mar 06 2004
a(n) == 1 (mod 30). - Michael Somos, Jul 23 2005
EXAMPLE
(sec(x/2)^2 + sech(x/2)^2)/2 = 1 + x^4/4! + 31*x^8/8! + 5461*x^12/12! + ...
MAPLE
a := n->(2*2^(4*n+2)-2)*bernoulli(4*n+2)/(2*n+1): seq(a(n), n = 0 .. 15); # Stefano Spezia, Jun 14 2019
MATHEMATICA
a[n_]:=2*(2^(4*n+2)-1)*BernoulliB[4*n+2]/(2*n+1); Array[a, 15, 0] (* Stefano Spezia, Jun 14 2019 *)
PROG
(PARI) a(n)=if(n<0, 0, n*=4; n!*polcoeff(1/cosh(x/2+x*O(x^n))^2+1/cos(x/2+x*O(x^n))^2, n)/2) /* Michael Somos, Mar 06 2004 */
(PARI) a(n)=if(n<0, 0, n=4*n+2; 4*(2^n-1)*bernfrac(n)/n) /* Michael Somos, Mar 06 2004 */
(Magma) [2*(4^(2*n+1) -1)*BernoulliNumber(4*n+2)/(2*n+1): n in [0..15]]; // G. C. Greubel, Jun 28 2019
(Sage) [2*(4^(2*n+1)-1)*bernoulli(4*n+2)/(2*n+1) for n in (0..15)] # G. C. Greubel, Jun 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 18 2003
STATUS
approved