%I #8 Jun 26 2017 22:23:59
%S 0,0,1,2,4,9,16,27,39,57,77,105,135,174,217,269,325,393,466,552,642,
%T 747,857,984,1116,1266,1423,1598,1780,1983,2194,2427,2667,2931,3203,
%U 3501,3807,4140,4483,4853,5233,5643,6064,6516,6978,7473,7979,8520,9072,9660,10261
%N a(n) = round(n^3/12) - floor(n/4)*floor((n+2)/4).
%C An erroneous form of A005044 (n^3/12 should be n^2/12).
%D G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
%H G. C. Greubel, <a href="/A090676/b090676.txt">Table of n, a(n) for n = 0..1000</a>
%t Table[Round[n^3/12] - Floor[n/4]*Floor[(n + 2)/4], {n, 0, 50}] (* _G. C. Greubel_, Jun 26 2017 *)
%o (PARI) for(n=0,25, print1(round(n^3/12) - floor(n/4)*floor((n+2)/4), ", ")) \\ _G. C. Greubel_, Jun 26 2017
%K nonn
%O 0,4
%A _N. J. A. Sloane_, Dec 19 2003