The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090666 Number of repetitions (defined as the number of appearances minus one) of L quantum number for a given value of N=2*nb+tau=0,1,2,... principal quantum number for the 5 dimensional harmonic oscillator (connected to the solution of Bohr equation in 5 dimensional). For each tau, nu=0,1,..,[tau/3] and K=tau-2*nu. Finally L=K,K+1,K+2,...,2*K-2,2*K (or alternatively from K to 2*K with the exception of 2*K-1). 0
 0, 0, 0, 0, 2, 3, 7, 11, 18, 26, 36, 48, 63, 79, 99, 121, 146, 174, 206, 240, 279, 321, 367, 417, 472, 530, 594, 662, 735, 813, 897 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Nuclear Phyics, collective model: classification of states based on quantum numbers and group theory. REFERENCES L. Fortunato, Compendium on the solutions of the Bohr hamiltonian, in preparation (Dec. 2003). LINKS L. Fortunato, Solutions of the Bohr hamiltonian, a compendium, arXiv:nucl-th/0411087, 2004; Eur. Phys. J. A26S1 (2005) 1-30. (arxiv preprint) FORMULA N = 2*nb+tau = 0, 1, 2, ..... nb=0, 1, 2, .... tau=0, 1, 2, .... nu=0, 1, .., [tau/3] K=tau-2*nu L=K, K+1, K+2, ..., 2*K-2, 2*K G.f.: x^4*(x^2-x+1)*(x^5-x^4-2x^3+x+2)/((x-1)^4*(x+1)*(x^2+x+1)). - conjectured by Jean-François Alcover, Feb 18 2019 EXAMPLE a(N=0)=0 because N=0 implies nb=0 and tau=0. Hence nu=0, K=0 and L=0. There are no repetitions. a(N=4)=2 because N=2 implies (nb,tau)= (0,4),(1,2),(2,0). At the end L=0,2,4,2,4,4,5,6,8, so that only 2 repetitions are found. PROG (FORTRAN 77) implicit integer(a-z) dimension mrep(0:100) do N=0, 30 do L=0, 100 mrep(L)=0 enddo do nb=0, nint(real(N)/2.-0.01) tau=N-2*nb numax=int(tau/3) do nu=0, numax K=tau-3*nu do L=K, 2*K if(L.eq.(2*K-1)) goto 100 mrep(L)=mrep(L)+1 100 enddo enddo enddo sum=0 do L=0, 100 if(mrep(L).gt.0) then sum=sum+mrep(L)-1 endif enddo print *, N, sum enddo end CROSSREFS Sequence in context: A060341 A114345 A077165 * A140409 A201011 A108541 Adjacent sequences:  A090663 A090664 A090665 * A090667 A090668 A090669 KEYWORD nonn,more AUTHOR Lorenzo Fortunato (fortunat(AT)pd.infn.it), Dec 16 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 20:33 EST 2020. Contains 332210 sequences. (Running on oeis4.)