login
A090642
Triangle read by rows: T(n,k) = binomial(n^2, k), 0 <= k <= n.
12
1, 1, 1, 1, 4, 6, 1, 9, 36, 84, 1, 16, 120, 560, 1820, 1, 25, 300, 2300, 12650, 53130, 1, 36, 630, 7140, 58905, 376992, 1947792, 1, 49, 1176, 18424, 211876, 1906884, 13983816, 85900584, 1, 64, 2016, 41664, 635376, 7624512, 74974368, 621216192, 4426165368
OFFSET
0,5
COMMENTS
A066382(n) = Sum_{k=0..n} T(n,k).
LINKS
Nathaniel Johnston, Rows 0..100, flattened
EXAMPLE
Triangle begins:
1;
1, 1;
1, 4, 6;
1, 9, 36, 84;
1, 16, 120, 560, 1820;
1, 25, 300, 2300, 12650, 53130;
1, 36, 630, 7140, 58905, 376992, 1947792;
...
MAPLE
for n from 0 to 6 do seq(binomial(n^2, k), k=0..n); od; # Nathaniel Johnston, Jun 24 2011
CROSSREFS
Cf. A007318 (Pascal's triangle), A014062 (right diagonal).
Sequence in context: A119439 A290823 A370706 * A100612 A322778 A079160
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, Dec 13 2003
STATUS
approved