login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090590 (1,1) entry of powers of the orthogonal design shown below. 3
1, -6, -20, 8, 176, 288, -832, -3968, -1280, 29184, 68608, -96256, -741376, -712704, 4505600, 14712832, -6619136, -130940928, -208928768, 629669888, 2930769920, 824180736, -21797797888, -50189041664, 74004299776, 549520932864 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

+1 +1 +1 +1 +1 +1 +1 +1

-1 +1 +1 -1 +1 -1 -1 +1

-1 -1 +1 +1 +1 +1 -1 -1

-1 +1 -1 +1 +1 -1 +1 -1

-1 -1 -1 -1 +1 +1 +1 +1

-1 +1 -1 +1 -1 +1 -1 +1

-1 +1 +1 -1 -1 +1 +1 -1

-1 -1 +1 +1 -1 -1 +1 +1

Also real part of (1 +- i*sqrt(7))^n. - Bruno Berselli, Jun 24-25 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..202

Index entries for linear recurrences with constant coefficients, signature (2,-8).

FORMULA

G.f.: x*(1-8*x)/(1-2*x+8*x^2). - T. D. Noe, Dec 11 2006

From Bruno Berselli, Jun 24-25 2011: (Start)

a(n) = (1/2)*((1+i*sqrt(7))^n + (1-i*sqrt(7))^n), where i=sqrt(-1).

a(n) = cos(n*arctan(sqrt(7)))*sqrt(8)^n.

a(n) = 2*a(n-1) - 8*a(n-2) (n > 2). (End)

MAPLE

a := proc(n) option remember: if(n=1)then return 1:elif(n=2)then return -6:fi: return 2*a(n-1)-8*a(n-2): end: seq(a(n), n=1..26); # Nathaniel Johnston, Jun 25 2011

MATHEMATICA

LinearRecurrence[{2, -8}, {1, -6}, 30] (* Harvey P. Dale, Mar 30 2019 *)

PROG

From Bruno Berselli, Jun 24-25 2011: (Start)

(MAGMA) m:=27; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-8*x)/(1-2*x+8*x^2)));

(Maxima) makelist(expand(((1+sqrt(-1)*sqrt(7))^n+(1-sqrt(-1)*sqrt(7))^n)/2), n, 1, 26);

(PARI) a=vector(26); a[1]=1; a[2]=-6; for(i=3, #a, a[i]=2*a[i-1]-8*a[i-2]); a (End)

CROSSREFS

Cf. A087621, A090591.

Sequence in context: A282377 A281936 A075251 * A002566 A087998 A096823

Adjacent sequences:  A090587 A090588 A090589 * A090591 A090592 A090593

KEYWORD

sign,easy

AUTHOR

Simone Severini, Dec 04 2003

EXTENSIONS

Corrected by T. D. Noe, Dec 11 2006

More terms from Bruno Berselli, Jun 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 05:07 EST 2019. Contains 329323 sequences. (Running on oeis4.)