The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090495 Numbers n such that numerator(Bernoulli(2*n)/(2*n)) is different from numerator(Bernoulli(2*n)/(2*n*(2*n-1))). 13
 574, 1185, 1240, 1269, 1376, 1906, 1910, 2572, 2689, 2980, 3238, 3384, 3801, 3904, 4121, 4570, 4691, 4789, 5236, 5862, 5902, 6227, 6332, 6402, 6438, 6568, 7234, 7900, 8113, 8434, 8543, 8557, 8566, 9232, 9611, 9670, 9824, 9891, 9898, 10564, 10587, 10754, 11230, 11247, 11535, 11691, 11896, 12562, 12965, 13019, 13228, 13246, 13355, 13484, 13894, 14560, 14714, 14957, 15176, 15226, 15346, 15892, 16558, 16668, 16944, 17035, 17224, 17387, 17890, 18379, 18406, 18534, 18556, 18761, 19222, 19598, 19888, 20090 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Michael Somos (Feb 01 2004) discovered the remarkable fact that A001067 is different from A046968, even though they agree for the first 573 terms. Numbers n such that A001067 is different from A046968, or alternatively, those n such that gcd(A001067(n),2n-1) is > 1. If gcd(A000367(n), A000367(n+2)) <>1 then n = A090495(n) - (3*A090496(n) + 1)/2. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 08 2004 So far, all terms correspond to irregular primes. Notice that these numbers are generated by n=((2k+1)p+1)/2 where p is an irregular prime and k is some integer = 1,2,... . In the Excel spreadsheet provided at the link, you will notice that much larger firstborn irregular primes p tend to produce smaller values of k. E.g., p = 691, 683, 653, k = 5, 15, 23. So by some guessing we could test a given large irregular prime for the first few values of k. I found ip's 257, 293, 311 this way, but not the index. Also the spreadsheet shows the corresponding irregular primes where the Bacher forecast fails for firstborn irregular prime. - Cino Hilliard, Feb 15 2004 LINKS Robert G. Wilson v, Table of n, a(n) for n = 1..200 Cino Hilliard, Bernoulli ratios [posted on Yahoo group B2LCC, Feb 04 2004] Eric Weisstein's World of Mathematics, Stirling's Series MAPLE a := n->numer(bernoulli(2*n)/(2*n)): b := n->numer(bernoulli(2*n)/(2*n*(2*n-1))): for n from 1 to 2000 do if a(n)<>b(n) then print(n, a(n)/b(n)); fi; od: MATHEMATICA a[n_] := Numerator[BernoulliB[2n]/(2n)] (* A001067 *); b[n_] := Numerator[BernoulliB[2n]/(2n(2n-1))] (* A046968 *); For[n=1, n <= 580, n++, If[ a[n] != b[n], Print[n, " ", a[n]/b[n]] ] ] k = 1; lst = {}; While[k < 38001, b = BernoulliB[2 k]; If [Numerator[b/(2 k)] != Numerator[b/(2 k (2 k - 1))], AppendTo[lst, k]; Print[{k}]]; k++ ]; lst (* Robert G. Wilson v, Aug 19 2010 *) PROG (PARI) bern2(c, m1, m2) = { for(n=m1, m2, n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-1)); if(a <> b, print("A("c") = "n", "a/b); c++) ) } \\ Cino Hilliard CROSSREFS Cf. A090496, A001067, A046968, A092291. A274297. Sequence in context: A263813 A231244 A252115 * A092291 A158371 A066154 Adjacent sequences: A090492 A090493 A090494 * A090496 A090497 A090498 KEYWORD nonn,nice AUTHOR N. J. A. Sloane, Feb 03 2004 EXTENSIONS a(1)-a(7) from Michael Somos and W. Edwin Clark, Feb 03 2004 a(8)-a(9) from Robert G. Wilson v, Feb 03 2004 a(10)-a(12) from Eric W. Weisstein, Feb 03 2004 a(13)-a(39) from Cino Hilliard, Feb 03 2004 a(40) from Eric W. Weisstein, Feb 04 2004 Many further terms from Cino Hilliard, Feb 15 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 23:12 EST 2023. Contains 360111 sequences. (Running on oeis4.)