login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090495
Numbers n such that numerator(Bernoulli(2*n)/(2*n)) is different from numerator(Bernoulli(2*n)/(2*n*(2*n-1))).
13
574, 1185, 1240, 1269, 1376, 1906, 1910, 2572, 2689, 2980, 3238, 3384, 3801, 3904, 4121, 4570, 4691, 4789, 5236, 5862, 5902, 6227, 6332, 6402, 6438, 6568, 7234, 7900, 8113, 8434, 8543, 8557, 8566, 9232, 9611, 9670, 9824, 9891, 9898, 10564, 10587, 10754, 11230, 11247, 11535, 11691, 11896, 12562, 12965, 13019, 13228, 13246, 13355, 13484, 13894, 14560, 14714, 14957, 15176, 15226, 15346, 15892, 16558, 16668, 16944, 17035, 17224, 17387, 17890, 18379, 18406, 18534, 18556, 18761, 19222, 19598, 19888, 20090
OFFSET
1,1
COMMENTS
Michael Somos (Feb 01 2004) discovered the remarkable fact that A001067 is different from A046968, even though they agree for the first 573 terms.
Numbers n such that A001067 is different from A046968, or alternatively, those n such that gcd(A001067(n),2n-1) is > 1.
If gcd(A000367(n), A000367(n+2)) <>1 then n = A090495(n) - (3*A090496(n) + 1)/2. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 08 2004
So far, all terms correspond to irregular primes. Notice that these numbers are generated by n=((2k+1)p+1)/2 where p is an irregular prime and k is some integer = 1,2,... . In the Excel spreadsheet provided at the link, you will notice that much larger firstborn irregular primes p tend to produce smaller values of k. E.g., p = 691, 683, 653, k = 5, 15, 23. So by some guessing we could test a given large irregular prime for the first few values of k. I found ip's 257, 293, 311 this way, but not the index. Also the spreadsheet shows the corresponding irregular primes where the Bacher forecast fails for firstborn irregular prime. - Cino Hilliard, Feb 15 2004
LINKS
Cino Hilliard, Bernoulli ratios [posted on Yahoo group B2LCC, Feb 04 2004]
Eric Weisstein's World of Mathematics, Stirling's Series
MAPLE
a := n->numer(bernoulli(2*n)/(2*n)): b := n->numer(bernoulli(2*n)/(2*n*(2*n-1))): for n from 1 to 2000 do if a(n)<>b(n) then print(n, a(n)/b(n)); fi; od:
MATHEMATICA
a[n_] := Numerator[BernoulliB[2n]/(2n)] (* A001067 *); b[n_] := Numerator[BernoulliB[2n]/(2n(2n-1))] (* A046968 *); For[n=1, n <= 580, n++, If[ a[n] != b[n], Print[n, " ", a[n]/b[n]] ] ]
k = 1; lst = {}; While[k < 38001, b = BernoulliB[2 k]; If [Numerator[b/(2 k)] != Numerator[b/(2 k (2 k - 1))], AppendTo[lst, k]; Print[{k}]]; k++ ]; lst (* Robert G. Wilson v, Aug 19 2010 *)
PROG
(PARI) bern2(c, m1, m2) = { for(n=m1, m2, n2=n+n; a = numerator(bernfrac(n2)/(n2)); \ A001067 b = numerator(a/(n2-1)); if(a <> b, print("A("c") = "n", "a/b); c++) ) } \\ Cino Hilliard
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Feb 03 2004
EXTENSIONS
a(1)-a(7) from Michael Somos and W. Edwin Clark, Feb 03 2004
a(8)-a(9) from Robert G. Wilson v, Feb 03 2004
a(10)-a(12) from Eric W. Weisstein, Feb 03 2004
a(13)-a(39) from Cino Hilliard, Feb 03 2004
a(40) from Eric W. Weisstein, Feb 04 2004
Many further terms from Cino Hilliard, Feb 15 2004
STATUS
approved