This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090492 G.f.: (1+x^10)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). 1
 1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 16, 20, 21, 27, 28, 35, 36, 44, 46, 55, 58, 67, 71, 82, 86, 99, 103, 117, 123, 138, 145, 161, 169, 187, 196, 216, 225, 247, 258, 281, 294, 318, 332, 359, 374, 403, 419, 450, 468, 501, 521, 555, 577, 614, 637, 677, 701, 743, 770, 814 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A_8 = SL_2(4) and acts on F_2[x_1, ..., x_4]. There are two copies of A_5 inside A_8. This is the Poincare series (or Molien series) for the subgroup A_5 acting on F_2[x_1, ..., x_4] by tensoring over F_2 from the action of S_5 on Z^4 where Z^4 consists of those elements (n_1, ..., n_5) with Sum n_i = 0. That is, A_5 acts on the sub-ring F_2[x_1 - x_5, x_2 - x_5, x_3 - x_5, x_4 - x_5] subset F_2[x_1, ..., x_5] by restriction to A_5 of the permutation S_5 action. See A089596 for the other A_5. REFERENCES A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 113. H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 130. LINKS Index entries for linear recurrences with constant coefficients, signature (0,2,1,-1,-1,0,-1,-1,1,2,0,-1). FORMULA a(n) ~ 1/360*n^3 + 1/60*n^2. - Ralf Stephan, Apr 29 2014 G.f.: ( 1-x^2-x^6+x^4+x^8 ) / ( (1+x+x^2)*(1+x+x^3+x^2+x^4)*(1+x)^2*(x-1)^4 ). - R. J. Mathar, Dec 18 2014 Euler transform of length 20 sequence [ 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Jul 19 2015 a(n) = - a(-4-n) for all n in Z. - Michael Somos, Jul 19 2015 EXAMPLE G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + ... PROG (PARI) {a(n) = (n^3 + 6*n^2 + 96*n - 45*(n%2)*(n+2) - 9*(n%15==11)) \ 360 + 1}; /* Michael Somos, Jul 19 2015 */ (PARI) {a(n) = my(s=1); if( n<0, n = -4-n; s = -1); s * polcoeff( (1 + x^10) / ((1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Jul 19 2015 */ (PARI) Vec((1+x^10)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) + O(x^80)) \\ Michel Marcus, Jul 19 2015 CROSSREFS Sequence in context: A184324 A116575 A244800 * A239949 A103609 A237800 Adjacent sequences:  A090489 A090490 A090491 * A090493 A090494 A090495 KEYWORD nonn AUTHOR N. J. A. Sloane, Feb 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .