

A090492


G.f.: (1+x^10)/((1x^2)*(1x^3)*(1x^4)*(1x^5)).


1



1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 16, 20, 21, 27, 28, 35, 36, 44, 46, 55, 58, 67, 71, 82, 86, 99, 103, 117, 123, 138, 145, 161, 169, 187, 196, 216, 225, 247, 258, 281, 294, 318, 332, 359, 374, 403, 419, 450, 468, 501, 521, 555, 577, 614, 637, 677, 701, 743, 770, 814
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

A_8 = SL_2(4) and acts on F_2[x_1, ..., x_4]. There are two copies of A_5 inside A_8. This is the Poincare series (or Molien series) for the subgroup A_5 acting on F_2[x_1, ..., x_4] by tensoring over F_2 from the action of S_5 on Z^4 where Z^4 consists of those elements (n_1, ..., n_5) with Sum n_i = 0. That is, A_5 acts on the subring F_2[x_1  x_5, x_2  x_5, x_3  x_5, x_4  x_5] \subset F_2[x_1, \dots, x_5] by restriction to A_5 of the permutation S_5 action. See A089596 for the other A_5.


REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, SpringerVerlag, 2nd. ed., 2004; p. 113.
H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 130.


LINKS

Table of n, a(n) for n=0..64.
Index entries for Molien series
Index to sequences with linear recurrences with constant coefficients, signature (0,2,1,1,1,0,1,1,1,2,0,1).


FORMULA

a(n) ~ 1/360*n^3 + 1/60*n^2.  Ralf Stephan, Apr 29 2014
G.f.: ( 1x^2x^6+x^4+x^8 ) / ( (1+x+x^2)*(1+x+x^3+x^2+x^4)*(1+x)^2*(x1)^4 ).  R. J. Mathar, Dec 18 2014


CROSSREFS

Sequence in context: A184324 A116575 A244800 * A239949 A103609 A237800
Adjacent sequences: A090489 A090490 A090491 * A090493 A090494 A090495


KEYWORD

nonn,changed


AUTHOR

N. J. A. Sloane, Feb 02 2004


STATUS

approved



