login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090492 G.f.: (1+x^10)/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)). 1
1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 16, 20, 21, 27, 28, 35, 36, 44, 46, 55, 58, 67, 71, 82, 86, 99, 103, 117, 123, 138, 145, 161, 169, 187, 196, 216, 225, 247, 258, 281, 294, 318, 332, 359, 374, 403, 419, 450, 468, 501, 521, 555, 577, 614, 637, 677, 701, 743, 770, 814 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

A_8 = SL_2(4) and acts on F_2[x_1, ..., x_4]. There are two copies of A_5 inside A_8. This is the Poincare series (or Molien series) for the subgroup A_5 acting on F_2[x_1, ..., x_4] by tensoring over F_2 from the action of S_5 on Z^4 where Z^4 consists of those elements (n_1, ..., n_5) with Sum n_i = 0. That is, A_5 acts on the sub-ring F_2[x_1 - x_5, x_2 - x_5, x_3 - x_5, x_4 - x_5] \subset F_2[x_1, \dots, x_5] by restriction to A_5 of the permutation S_5 action. See A089596 for the other A_5.

REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 113.

H. Derksen and G. Kemper, Computational Invariant Theory, Springer, 2002; p. 130.

LINKS

Table of n, a(n) for n=0..64.

Index entries for Molien series

FORMULA

a(n) ~ 1/360*n^3 + 1/60*n^2. - Ralf Stephan, Apr 29 2014

CROSSREFS

Sequence in context: A184324 A116575 A244800 * A239949 A103609 A237800

Adjacent sequences:  A090489 A090490 A090491 * A090493 A090494 A090495

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 02 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 26 01:07 EDT 2014. Contains 244923 sequences.