The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090373 Number of unrooted planar 4-constellations with n quadrangles. 2


%S 1,10,60,875,14600,303814,6846180,165740155,4221248540,112001557620,

%T 3071766596524,86596464513410,2498536503831640,73533104142072810,

%U 2201538635362482480,66907117946947479163,2060374053699504740000

%N Number of unrooted planar 4-constellations with n quadrangles.

%C These are planar maps with bicolored faces having n black quadrangular faces and an arbitrary number of white faces of degrees multiple to 4. The vertices can be and are colored so that any black quadrangle is colored counterclockwise 1,2,3,4. Isomorphisms are required to respect the colorings.

%H M. Bousquet-Mélou and G. Schaeffer, <a href="http://dx.doi.org/10.1006/aama.1999.0673">Enumeration of planar constellations</a>, Adv. in Appl. Math. v.24 (2000), 337-368.

%F a(n) = (5/(4*n))*(4^n*binomial(4*n,n)/((3*n+1)*(3*n+2))+s/2) where s = -4^n* binomial(4*n,n) + Sum_{d|n} (phi(n/d)*4^d*binomial(4*d,d)). - _Jean-François Alcover_, Aug 29 2019

%p with(numtheory): C_4 := proc(n) local s,d; if n=0 then RETURN(1) else s := -4^n*binomial(4*n,n); for d in divisors(n) do s := s+phi(n/d)*4^d*binomial(4*d,d) od; RETURN((5/(4*n))*(4^n*binomial(4*n,n)/((3*n+1)*(3*n+2))+s/2)); fi; end;

%t a[n_] := Module[{s}, s = -4^n Binomial[4n, n]; Do[s += EulerPhi[n/d] 4^d Binomial[4d, d], {d, Divisors[n]}]; (5/(4n))(4^n Binomial[4n, n]/((3n+1)(3n+2)) + s/2)];

%t Array[a, 17] (* _Jean-François Alcover_, Aug 29 2019 *)

%Y Cf. A090372, A090374.

%K easy,nonn

%O 1,2

%A _Valery A. Liskovets_, Dec 01 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 05:12 EDT 2020. Contains 336319 sequences. (Running on oeis4.)