login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090345 Number of Motzkin paths of length n with no level steps at even level. 6
1, 0, 1, 1, 3, 5, 12, 24, 55, 119, 272, 612, 1411, 3247, 7565, 17667, 41561, 98099, 232696, 553784, 1322813, 3169065, 7614583, 18342921, 44294991, 107200829, 259983346, 631718606, 1537737567, 3749440151, 9156561590, 22394270034 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Hankel transform of a(n) is A000012. Hankel transform of a(n+1) is 0,-1,0,1,0,-1,0,... or -[x^n](x/(1+x^2)). Hankel transform of a(n+2) is A008619(n+1). -Paul Barry, Mar 23 2011

Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U(k) = (k,1) for every positive integer k and down steps D = (1,-1). For instance, for n=5, we have the 5 paths: U(4)D, U(2)U(1)DD, U(1)U(2)DD, U(2)DU(1)D, U(1)DU(2)D. - José Luis Ramírez Ramírez, Apr 19 2015

REFERENCES

E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, area and superdiagonal bargraphs, J. Stat. Plan. Infer. 140 (6) (2010) 1550-1562 doi:10.1016/j.jspi.2009.12.013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: (1-z-sqrt(1-2*z-3*z^2+4*z^3))/(2*z^2).

G.f. A(x) satisfies A(x)=A(x/(x-1)). - Vladeta Jovovic, Jul 07 2004

Also (x*A)^2=(1-x)*(A-1). - Vladeta Jovovic, Jul 07 2004

G.f.: 1/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-x^2/(1-x-x^2/(1-... (continued fraction). [Paul Barry, Apr 08 2009]

G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x^2/(1-x) (continued fraction); in other words, g.f.: C(x^2/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). [Joerg Arndt, Mar 18 2011].

a(0) = 1, a(n) = sum{k=0..floor(n/2), (k/(n-k))C(n-k,k)*A000108(k)}. [Paul Barry, Jul 01 2009]

a(n) = sum{k=0..floor(n/2), C(n-k-1,n-2k)*A000108(k)}. [Paul Barry, Mar 23 2011]

The sequence starting with offset 1 = iterates of M*V, leftmost column. M = an infinite tridiagonal matrix with all 1's in the sub and superdiagonals and [0,1,0,1,0,1,0,1,...] as the main diagonal; and the rest zeros. V = vector [1,0,0,0,...]. [From Gary W. Adamson, Jun 08 2011]

Conjecture: (n+2)*a(n) +(-2*n-1)*a(n-1) +3*(-n+1)*a(n-2) +2*(2*n-5)*a(n-3)=0. - R. J. Mathar, Nov 24 2012

a(n) ~ sqrt(34+2*sqrt(17)) * ((1+sqrt(17))/2)^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014

EXAMPLE

a(5)=5 because we have UHDUD, UDUHD, UHUDD, UUDHD and UHHHD, where U=(1,1),

D=(1,-1) and H=(1,0).

MATHEMATICA

CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2+4*x^3])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

CROSSREFS

Cf. A001006.

First differences of A090344.

Sequence in context: A047761 A026786 A027246 * A185087 A186334 A303587

Adjacent sequences:  A090342 A090343 A090344 * A090346 A090347 A090348

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Jan 28 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 20:54 EST 2019. Contains 320328 sequences. (Running on oeis4.)