login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090317 Row sums of triangle in A090285. 3
1, 2, 7, 28, 118, 510, 2235, 9876, 43870, 195556, 873814, 3911168, 17527904, 78622982, 352911939, 1584927828, 7120769526, 32002212252, 143859840114, 646819996008, 2908670252676, 13081556909292, 58839348572574, 264674150692488, 1190649451348908, 5356483791828840, 24098774900561500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Apply the inverse of the Riordan array (1/(1-x^2),x/(1+x)^2) to 2^n. - Paul Barry, Mar 13 2009

Hankel transform is A079935. - Paul Barry, Mar 13 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n+1) = A000108(n+1) + Sum_ {k=0..n} a(n-k)*A001700(k); a(0) = 1.

G.f.: (1-x^2*c(x)^4)/(1-2x*c(x)^2), where c(x) is the g.f. of the Catalan numbers A000108. - Paul Barry, Mar 13 2009

Recurrence: 2*(n+1)*(n+3)*a(n) = (17*n^2+56*n-21)*a(n-1) - 18*(n+4)*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 14 2012

a(n) ~ 9^n/2^(n+2). - Vaclav Kotesovec, Oct 14 2012

MATHEMATICA

Table[SeriesCoefficient[(1-x^2*((1-Sqrt[1-4*x])/(2*x))^4)/(1-2*x*((1-Sqrt[1-4*x])/(2*x))^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)

PROG

(PARI) x='x+O('x^66); Vec((1-x^2*((1-sqrt(1-4*x))/(2*x))^4)/(1-2*x*((1-sqrt(1-4*x))/(2*x))^2)) \\ Joerg Arndt, May 11 2013

CROSSREFS

Cf. A000108 A001700 A090285.

Sequence in context: A150647 A150648 A150649 * A150650 A150651 A151298

Adjacent sequences:  A090314 A090315 A090316 * A090318 A090319 A090320

KEYWORD

easy,nonn

AUTHOR

Philippe Deléham, Jan 25 2004

EXTENSIONS

Term 15 corrected by Paul Barry, Mar 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 13:27 EST 2016. Contains 279004 sequences.