%I #24 Sep 08 2022 08:45:12
%S 2,21,443,9324,196247,4130511,86936978,1829807049,38512885007,
%T 810600392196,17061121121123,359094143935779,7558038143772482,
%U 159077895163157901,3348193836570088403,70471148463135014364
%N a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
%C Lim_{n-> infinity} a(n)/a(n+1) = 0.0475115... = 2/(21+sqrt(445)) = (sqrt(445)-21)/2.
%C Lim_{n-> infinity} a(n+1)/a(n) = 21.0475115... = (21+sqrt(445))/2 = 2/(sqrt(445)-21).
%C a(2) = 443 divides a(14) = 3348193836570088403. Does this relate to the sequence being the (21,1)-weighted Fibonacci sequence with seed (2,21) and both 14 and 21 being multiples of 7? Primes in this sequence include: a(0) = 2, a(2) = 443, a(4) = 196247 Semiprimes in this sequence include: a(8) = 38512885007 = 97967 * 393121, a(14) = 3348193836570088403 = 443 * 7557999631083721. - _Jonathan Vos Post_, Feb 10 2005
%H G. C. Greubel, <a href="/A090310/b090310.txt">Table of n, a(n) for n = 0..500</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (21,1).
%F a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
%F a(n) = ((21+sqrt(445))/2)^n + ((21-sqrt(445))/2)^n.
%F (a(n))^2 = a(2n) - 2 if n=1, 3, 5... .
%F (a(n))^2 = a(2n) + 2 if n=2, 4, 6... .
%F G.f.: (2-21*x)/(1-21*x-x^2). - _Philippe Deléham_, Nov 02 2008
%F a(n) = Lucas(n, 21) = 2*(-i)^n * ChebyshevT(n, 21*i/2). - _G. C. Greubel_, Dec 30 2019
%e a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
%p seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # _G. C. Greubel_, Dec 30 2019
%t LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x] (* _Harvey P. Dale_, Apr 24 2011 *)
%t LucasL[Range[20]-1,21] (* _G. C. Greubel_, Dec 30 2019 *)
%o (PARI) vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ _G. C. Greubel_, Dec 30 2019
%o (Magma) m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 30 2019
%o (Sage) [2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # _G. C. Greubel_, Dec 30 2019
%o (GAP) m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # _G. C. Greubel_, Dec 30 2019
%Y Cf. A014842, A057031.
%Y Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), this sequence (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).
%K easy,nonn
%O 0,1
%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
%E More terms from _Ray Chandler_, Feb 14 2004