login
a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
13

%I #26 Sep 08 2022 08:45:12

%S 2,18,326,5886,106274,1918818,34644998,625528782,11294163074,

%T 203920464114,3681862517126,66477445772382,1200275886420002,

%U 21671443401332418,391286257110403526,7064824071388595886

%N a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.

%C Lim_{n-> infinity} a(n)/a(n+1) = 0.0553851... = 1/(9+sqrt(82)) = (sqrt(82)-9).

%C Lim_{n-> infinity} a(n+1)/a(n) = 18.0553851... = (9+sqrt(82)) = 1/(sqrt(82)-9).

%H G. C. Greubel, <a href="/A090307/b090307.txt">Table of n, a(n) for n = 0..500</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,1).

%F a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.

%F a(n) = (9+sqrt(82))^n + (9-sqrt(82))^n.

%F (a(n))^2 = a(2n) - 2 if n=1, 3, 5, ...

%F (a(n))^2 = a(2n) + 2 if n=2, 4, 6, ...

%F G.f.: (2-18*x)/(1-18*x-x^2). - _Philippe Deléham_, Nov 02 2008

%F a(n) = Lucas(n, 18) = 2*(-i)^n * ChebyshevT(n, 9*i). - _G. C. Greubel_, Dec 30 2019

%F E.g.f.: 2*exp(9*x)*cosh(sqrt(82)*x). - _Stefano Spezia_, Dec 31 2019

%e a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.

%p seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # _G. C. Greubel_, Dec 30 2019

%t LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* _Harvey P. Dale_, Apr 22 2011 *)

%t LucasL[Range[20]-1, 18] (* _G. C. Greubel_, Dec 30 2019 *)

%o (PARI) vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ _G. C. Greubel_, Dec 30 2019

%o (Magma) m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 30 2019

%o (Sage) [2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # _G. C. Greubel_, Dec 30 2019

%o (GAP) m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # _G. C. Greubel_, Dec 30 2019

%Y Cf. A083218, A087215.

%Y Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), this sequence (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

%K easy,nonn

%O 0,1

%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

%E More terms from _Ray Chandler_, Feb 14 2004