%I #27 Sep 08 2022 08:45:12
%S 2,17,291,4964,84679,1444507,24641298,420346573,7170533039,
%T 122319408236,2086600473051,35594527450103,607193567124802,
%U 10357885168571737,176691241432844331,3014108989526925364,51416544063390575519
%N a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
%C Lim_{n-> infinity} a(n)/a(n+1) = 0.058621... = 2/(17+sqrt(293)) = (sqrt(293)-17)/2.
%C Lim_{n-> infinity} a(n+1)/a(n) = 17.058621... = (17+sqrt(293))/2 = 2/(sqrt(293)-17).
%C For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - _Johannes W. Meijer_, Jun 12 2010
%H G. C. Greubel, <a href="/A090306/b090306.txt">Table of n, a(n) for n = 0..500</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,1).
%F a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
%F a(n) = ((17+sqrt(293))/2)^n + ((17-sqrt(293))/2)^n.
%F (a(n))^2 = a(2n) - 2 if n=1, 3, 5, ...
%F (a(n))^2 = a(2n) + 2 if n=2, 4, 6, ...
%F G.f.: (2-17*x)/(1-17*x-x^2). - _Philippe Deléham_, Nov 02 2008
%F From _Johannes W. Meijer_, Jun 12 2010: (Start)
%F a(2n+1) = 17*A098249(n).
%F a(3n+1) = A041550(5n), a(3n+2) = A041550(5n+3), a(3n+3) = 2*A041550(5n+4).
%F Lim_{k-> infinity} a(n+k)/a(k) = (A090306(n) + A178765(n)*sqrt(293))/2.
%F Lim_{n-> infinity} A090306(n)/A178765(n) = sqrt(293). (End)
%F a(n) = Lucas(n, 17) = 2*(-i)^n * ChebyshevT(n, 17*i/2). - _G. C. Greubel_, Dec 30 2019
%F E.g.f.: 2*exp(17*x/2)*cosh(sqrt(293)*x/2). - _Stefano Spezia_, Dec 31 2019
%e a(4) = 17*a(3) + a(2) = 17*4964 + 291=((17+sqrt(293))/2)^4 + ((17-sqrt(293))/2)^4 = 84678.999988190 + 0.000011809 = 84679.
%p seq(simplify(2*(-I)^n*ChebyshevT(n, 17*I/2)), n = 0..20); # _G. C. Greubel_, Dec 30 2019
%t LinearRecurrence[{17,1},{2,17},30] (* _Harvey P. Dale_, Jan 24 2018 *)
%t LucasL[Range[20]-1, 17] (* _G. C. Greubel_, Dec 30 2019 *)
%o (PARI) vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 17*I/2) ) \\ _G. C. Greubel_, Dec 30 2019
%o (Magma) m:=17; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // _G. C. Greubel_, Dec 30 2019
%o (Sage) [2*(-I)^n*chebyshev_T(n, 17*I/2) for n in (0..20)] # _G. C. Greubel_, Dec 30 2019
%o (GAP) m:=17;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # _G. C. Greubel_, Dec 30 2019
%Y Cf. A005074.
%Y Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), this sequence (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).
%K easy,nonn
%O 0,1
%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
%E More terms from _Ray Chandler_, Feb 14 2004