login
A090297
a(n) = K_5(n) = Sum_{k>=0} A090285(5,k)*2^k*binomial(n,k). a(n) = 2*(2*n^5+45*n^4+360*n^3+1215*n^2+1528*n+315)/15.
1
42, 462, 1586, 3958, 8330, 15694, 27314, 44758, 69930, 105102, 152946, 216566, 299530, 405902, 540274, 707798, 914218, 1165902, 1469874, 1833846, 2266250, 2776270, 3373874, 4069846, 4875818, 5804302, 6868722, 8083446, 9463818
OFFSET
0,1
COMMENTS
Values of polynomial K_5 related to A090285.
FORMULA
G.f.: (42+210*x-556*x^2+532*x^3-238*x^4+42*x^5)/(1-x)^6. [Colin Barker, Sep 18 2012]
MATHEMATICA
Table[(2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15), {n, 0, 50}] (* Vincenzo Librandi, Sep 18 2012 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {42, 462, 1586, 3958, 8330, 15694}, 30] (* Harvey P. Dale, Apr 17 2020 *)
PROG
(Magma) [2*(2*n^5 + 45*n^4 + 360*n^3 + 1215*n^2 + 1528*n + 315)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2012
CROSSREFS
Cf. A090285.
Sequence in context: A156762 A248094 A244909 * A008387 A088626 A328175
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jan 25 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved