login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090288 a(n) = 2*n^2 + 6*n + 2. 19
2, 10, 22, 38, 58, 82, 110, 142, 178, 218, 262, 310, 362, 418, 478, 542, 610, 682, 758, 838, 922, 1010, 1102, 1198, 1298, 1402, 1510, 1622, 1738, 1858, 1982, 2110, 2242, 2378, 2518, 2662, 2810, 2962, 3118, 3278, 3442, 3610, 3782, 3958, 4138, 4322, 4510 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Values of polynomial K_2 related to A090285: a(n) = K_2(n) = Sum_{k>=0} A090285(2,k)*2^k*binomial(n,k).

Numbers k such that 2*k+5 is a square. - Vincenzo Librandi, Oct 10 2013

a(n) is the area of a triangle with vertices at (b(n-2),b(n-1)), (b(n),b(n+1)), and (b(n+2),B(n+3)) for b(k)=A000292(k) with n>1. - J. M. Bergot, Mar 23 2017

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 2*A028387(n).

G.f.: 2*(1 +2*x -x^2)/(1-x)^3. - R. J. Mathar, Apr 02 2008

E.g.f.: 2*(1 +4*x +x^2)*exp(x). - G. C. Greubel, Jul 13 2017

MATHEMATICA

Table[2*(n^2 +3*n +1), {n, 0, 50}] (* Vincenzo Librandi, Oct 10 2013 *)

LinearRecurrence[{3, -3, 1}, {2, 10, 22}, 50] (* Harvey P. Dale, May 04 2017 *)

PROG

(PARI) a(n)=2*n^2+6*n+2 \\ Charles R Greathouse IV, Sep 24 2015

(MAGMA) [2*(1+3*n+n^2): n in [0..50]]; // G. C. Greubel, May 31 2019

(Sage) [2*(1+3*n+n^2) for n in (0..50)] # G. C. Greubel, May 31 2019

(GAP) List([0..50], n-> 2*(1+3*n+n^2)) # G. C. Greubel, May 31 2019

CROSSREFS

Cf. A028387, A090285.

Sequence in context: A273993 A225290 A065450 * A032526 A294538 A096183

Adjacent sequences:  A090285 A090286 A090287 * A090289 A090290 A090291

KEYWORD

nonn,easy

AUTHOR

Philippe Deléham, Jan 25 2004

EXTENSIONS

Corrected by T. D. Noe, Nov 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)