login
A090197
a(n) = n^3 + 6*n^2 + 6*n + 1.
5
1, 14, 45, 100, 185, 306, 469, 680, 945, 1270, 1661, 2124, 2665, 3290, 4005, 4816, 5729, 6750, 7885, 9140, 10521, 12034, 13685, 15480, 17425, 19526, 21789, 24220, 26825, 29610, 32581, 35744, 39105, 42670, 46445, 50436, 54649, 59090, 63765
OFFSET
0,2
COMMENTS
N(4,n) where N(4,x) is the 4th Narayana polynomial.
a(n) + A016921(n+1) = (n+2)^3. [Bruno Berselli, Jun 24 2012]
FORMULA
a(n) = N(4,n) = Sum_{k>0} A001263(4, k)*n^(k-1) = (n+1)*(n^2+5*n+1).
G.f.: (1 + 10*x - 5*x^2) / (x-1)^4. - R. J. Mathar, Sep 07 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 14, 45, 100}, 40] (* Vincenzo Librandi, Jun 24 2012 *)
PROG
(PARI) n^3+6*n^2+6*n+1 \\ Charles R Greathouse IV, Jan 17 2012
(Magma) I:=[1, 14, 45, 100]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
CROSSREFS
For N(3,n), see A028387.
Sequence in context: A369240 A123295 A092350 * A010742 A232872 A232855
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 22 2004
STATUS
approved