%I #8 Oct 12 2013 15:14:06
%S 3,7,23,199,2297,30013,1021001,9699667,669278581,32348466119,
%T 401120980223,29682952539199,1825501581163217,39248283995010043,
%U 3074448912942456997,228124109340330313051,49991769104009528615759
%N Primes P such that P=k*p(n)#-p(n+1) is prime for least k. Here p(i)# denotes the i-th primorial and p(i) denotes the i-th prime.
%C k*p(n)#-p(n+1) is the greatest prime < k*p(n)#-p(n+1)-1 and if k*p(n)#-p(n+1)-1 is not prime it is the greatest prime < k*p(n)#-p(n+1). Values for k are given in A090189.
%e 1*2*3*5*7*11*13-17=30013, 1*p(6)#-p(7)=30013, 1 is the least k for n=6
%e 30013 is prime P for n=6.
%o (PARI) a(n)=my(P=prod(i=1,n,prime(i)),q=prime(n+1),k);while(!ispseudoprime(P*k++ - q), ); k*P-q \\ _Charles R Greathouse IV_, Feb 07 2013
%K base,nonn
%O 1,1
%A _Pierre CAMI_, Jan 21 2004
%E a(14) corrected by _Charles R Greathouse IV_, Feb 07 2013