The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090139 a(n) = 10*a(n-1) - 20*a(n-2), a(0)=1,a(1)=5. 7
 1, 5, 30, 200, 1400, 10000, 72000, 520000, 3760000, 27200000, 196800000, 1424000000, 10304000000, 74560000000, 539520000000, 3904000000000, 28249600000000, 204416000000000, 1479168000000000, 10703360000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fifth binomial transform of (1, 0, 5, 0, 25, 0, ...). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-20). FORMULA a(n) = ((5-sqrt(5))^n + (5+sqrt(5))^n)/2. a(n) = Sum_{k=0..floor(n/2)} C(n, 2k) * 5^(n-k). a(n) = Sum_{k=0..n} C(n, k) * 5^(n-k/2) * (1+(-1)^k)/2. a(n) = Sum_{k=0..n} 5^k*A098158(n,k). - Philippe Deléham, Dec 04 2006 G.f.: (1-5*x)/(1-10*x+20*x^2). - G. C. Greubel, Aug 02 2019 MATHEMATICA LinearRecurrence[{10, -20}, {1, 5}, 30] (* G. C. Greubel, Aug 02 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-5*x)/(1-10*x+20*x^2)) \\ G. C. Greubel, Aug 02 2019 (MAGMA) I:=[1, 5]; [n le 2 select I[n] else 10*Self(n-1) -20*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019 (Sage) ((1-5*x)/(1-10*x+20*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019 (GAP) a:=[1, 5];; for n in [3..30] do a[n]:=10*a[n-1]-20*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019 CROSSREFS Sequence in context: A322257 A103433 A081015 * A107265 A196678 A128328 Adjacent sequences:  A090136 A090137 A090138 * A090140 A090141 A090142 KEYWORD easy,nonn AUTHOR Paul Barry, Nov 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:24 EST 2020. Contains 331193 sequences. (Running on oeis4.)