login
A090138
Denominator of the probability that the sum of n uniform picks on [0,1] is first greater than 2 (i.e., the sum of n-1 is not).
2
1, 1, 6, 3, 40, 90, 336, 56, 51840, 226800, 4435200, 11975040, 188697600, 1210809600, 100590336000, 93405312000, 23712495206400, 2598365952000, 6360528125952, 3754478407680000, 537799391281152000, 802857662698291200
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
FORMULA
a(n) = denominator((n-2)*(2^(n-1)-n)/n!). - Amiram Eldar, Apr 12 2022
EXAMPLE
0, 0, 1/6, 1/3, 11/40, 13/90, 19/336, ...
MATHEMATICA
a[n_] := Denominator[(n - 2)*(2^(n - 1) - n)/n!]; Array[a, 50] (* Amiram Eldar, Apr 12 2022 *)
CROSSREFS
Cf. A090137 (numerators).
Sequence in context: A022666 A202363 A038257 * A229130 A349492 A088390
KEYWORD
nonn,frac
AUTHOR
Eric W. Weisstein, Nov 22 2003
STATUS
approved