%I #17 Feb 20 2024 13:17:36
%S 7,49,399,3689,38087,433713,5394991,72737161,1056085191,16423175153,
%T 272275569167,4792916427369,89267526953479,1753598009244529,
%U 36232438035285807,785431570870425353,17822981129678644871
%N Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n-1 zeros not on a line.
%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
%H Indranil Ghosh, <a href="/A090016/b090016.txt">Table of n, a(n) for n = 1..444</a>
%H Seok-Zun Song et al., <a href="https://doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
%F a(n) = (n+5)*a(n-1) + (n-2)*a(n-2), a(1)=7, a(2)=49
%F E.g.f.: 7*exp(-x)/(1-x)^8. - _Vladeta Jovovic_, Mar 19 2004
%F a(n) = (A000166(n-1)+7*A000166(n)+21*A000166(n+1)+35*A000166(n+2)+35*A000166(n+3)+21*A000166(n+4)+7*A000166(n+5)+A000166(n+6))/6!. - _Vladeta Jovovic_, Mar 19 2004
%F a(n) ~ exp(-1) * n! * n^6 / 6!. - _Vaclav Kotesovec_, Nov 30 2017
%t t={7,49};Do[AppendTo[t,(n+5)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* _Indranil Ghosh_, Feb 21 2017 *)
%Y a(n) = A090010(n-1) + A090010(n), a(1)=7
%Y Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090015.
%K nonn,easy
%O 1,1
%A _Jaap Spies_, Dec 13 2003
%E Corrected by _Jaap Spies_, Jan 26 2004