%I #19 Sep 16 2022 08:51:55
%S 6,36,258,2136,19998,208524,2393754,29976192,406446774,5930064372,
%T 92608986546,1541044428456,27216454135758,508388707585116,
%U 10013199347882058,207381428863832784,4505207996358719334
%N Permanent of (0,1)-matrix of size n X (n+d) with d=5 and n-1 zeros not on a line.
%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
%H Indranil Ghosh, <a href="/A090015/b090015.txt">Table of n, a(n) for n = 1..445</a>
%H Seok-Zun Song et al., <a href="http://dx.doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
%F a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36
%F a(n) ~ exp(-1) * n! * n^5 / 5!. - _Vaclav Kotesovec_, Nov 30 2017
%F a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - _Robert Israel_, Nov 26 2018
%p f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2),a(1)=6,a(2)=36},a(n),remember):
%p map(f, [$1..40]); # _Robert Israel_, Nov 26 2018
%t t={6,36};Do[AppendTo[t,(n+4)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* _Indranil Ghosh_, Feb 21 2017 *)
%t RecurrenceTable[{a[n] == (n+4)*a[n-1] + (n-2)*a[n-2],
%t a[1] == 6, a[2] == 36}, a, {n, 1, 40}] (* _Jean-François Alcover_, Sep 16 2022, after _Robert Israel_ *)
%Y a(n) = A001910(n-1) + A001910(n), a(1)=6
%Y Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090016.
%K nonn,easy
%O 1,1
%A _Jaap Spies_, Dec 13 2003
%E Corrected by _Jaap Spies_, Jan 26 2004