login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089982 Triangular numbers that can be expressed as the sum of 2 positive triangular numbers. 4
6, 21, 36, 55, 66, 91, 120, 136, 171, 210, 231, 276, 351, 378, 406, 496, 561, 666, 703, 741, 820, 861, 946, 990, 1035, 1081, 1176, 1225, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1891, 1953, 2016, 2080, 2211, 2278, 2346, 2556, 2701, 2775, 2850 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Intersection of triangular numbers with sumset of triangular numbers. Triangular number analog of what for squares is {A057100(n)^2} = {A009000(n)^2}. {A000217} INTERSECT {A000217 + A000217}. - Jonathan Vos Post, Mar 09 2007

LINKS

Table of n, a(n) for n=1..48.

FORMULA

Triangular number m is in this sequence iff A000161(4*m+1)>1 or, alternatively, A083025(4*m+1)>1. - Max Alekseyev, Oct 24 2008

a(n) = A000217(A012132(n)). - Ivan N. Ianakiev, Jan 17 2013

EXAMPLE

Generally, A000217(A000217(n)) = A000217(A000217(n)-1) + A000217(n) and so is automatically included. These are 6=T(3), 21=T(6), 55=T(10), etc. Other solutions occur when a partial sum from x to y is triangular, e.g., 15 + 16 + 17 + 18 = 66 = T(11), so T(14) + T(11) = T(18). This particular example arises since 10+4k is triangular (at k=14, 10 + 4k = 66), and we therefore have a solution.

All other solutions occur when 3+2k, 6+3k, 10+4k, etc. -- in general, T(j) + j*k -- is triangular.

MATHEMATICA

trn[i_]:=Module[{trnos=Accumulate[Range[i]], t2s}, t2s=Union[Total/@ Tuples[ trnos, 2]]; Intersection[trnos, t2s]] (* Harvey P. Dale, Nov 08 2011 *)

Select[Range[75], ! PrimeQ[#^2 + (# + 1)^2] &] /. Integer_ -> (Integer^2 + Integer)/2 (* Arkadiusz Wesolowski, Dec 03 2015 *)

PROG

(PARI) { v=vector(100, i, t(i)); y=vector(100); c=0; for (i=1, 30, for (j=i, 30, x=t(i)+t(j); f=0; for (k=1, 100, if (x==v[k], f=1; break)); if (f==1, y[c++ ]=x))); vecsort(y) }

CROSSREFS

Cf. A000217, A012132, A057100.

Sequence in context: A003340 A139606 A047717 * A151943 A207339 A056488

Adjacent sequences:  A089979 A089980 A089981 * A089983 A089984 A089985

KEYWORD

nonn,easy

AUTHOR

Jon Perry, Jan 13 2004

EXTENSIONS

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net) and David Wasserman, Sep 23 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 15:24 EST 2016. Contains 278750 sequences.