login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089949 Triangle T(n,k), read by rows, given by : [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. 10
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 12, 34, 24, 0, 1, 20, 110, 210, 120, 0, 1, 30, 270, 974, 1452, 720, 0, 1, 42, 560, 3248, 8946, 11256, 5040, 0, 1, 56, 1036, 8792, 38338, 87504, 97296, 40320, 0, 1, 72, 1764, 20580, 129834, 463050, 920184, 930960, 362880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Diagonals : A000007 A000012 A002378; A000142 . Row sums : A003319.

Row reverse appears to be A111184. - Peter Bala, Feb 17 2017

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

FORMULA

Sum_{k = 0...n} x^(n-k)*T(n, k) = A111528(x, n); see A000142, A003319, A111529, A111530, A111531, A111532, A111533 for x = 0, 1, 2, 3, 4, 5, 6 . - Philippe Deléham, Aug 09 2005

Sum_{k, 0<=k<=n} T(n, k)*3^k = A107716(n) . - Philippe Deléham, Aug 15 2005

Sum_{k, 0<=k<=n} T(n, k)*2^k = A000698(n+1) . - Philippe Deléham, Aug 15 2005

G.f.: A(x, y) = (1/x)*(1 - 1/(1 + Sum_{n>=1} [Prod_{k=0..n-1}(1+k*y)]*x^n )). - Paul D. Hanna, Aug 16 2005

EXAMPLE

Triangle begins:

1;

0,1;

0,1,2;

0,1,6,6;

0,1,12,34,24;

0,1,20,110,210,120;

0,1,30,270,974,1452,720; ...

PROG

(PARI) T(n, k)=if(n<k || k<0, 0, if(n==0, 1, if(k==0, 0, polcoeff(polcoeff( (1-1/(1+sum(m=1, n+k, prod(j=0, m-1, 1+j*y)*x^m)))/x +x*O(x^n), n, x)+y*O(y^k), k, y)))) \\ Paul D. Hanna, Aug 16 2005

CROSSREFS

Cf. A084938, A111184.

Sequence in context: A114709 A293147 A264550 * A085845 A138106 A131689

Adjacent sequences:  A089946 A089947 A089948 * A089950 A089951 A089952

KEYWORD

easy,nonn,tabl

AUTHOR

Philippe Deléham, Jan 11 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 06:02 EDT 2018. Contains 316432 sequences. (Running on oeis4.)