

A089842


Order of each element (row) in A089840, 0 if not finite.


2



1, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4, 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

If a(n) is nonzero, then the nth nonrecursive Catalan Automorphism in A089840 does not have orbits (cycles) larger than that and the corresponding LCMsequence will set to a constant sequence a(n),a(n),a(n),a(n),... E.g. A089840[4] = A089851 is obtained by rotating three subtrees cyclically and its LCMsequence begins as 1,1,1,3,3,3,3,3,3,3,3,... (a(4)=3). Similarly, A089840[15] = A089859, whose LCMsequence begins as 1,1,2,4,4,4,4,4,4,4,4,.... (a(15)=4). In contrast, the Max. cycle and LCMsequence (A089410) of A089840[12] (= A074679) exhibits genuine growth, thus a(12)=0.


LINKS

Table of n, a(n) for n=0..101.
A. Karttunen, Cprogram for computing the initial terms of this sequence


CROSSREFS

Note that the terms 123 of A060131: 2, 2, 3, 2, 3, 2, 2, 3, 4, 3, 4, 2, 3, 3, 4, 2, 4, 2, 3, 2, 4, 3, 4 repeat here at positions [22..44], [45..67], [68..90], [91..113], [114..136].
Sequence in context: A308641 A024676 A093429 * A258569 A091322 A252229
Adjacent sequences: A089839 A089840 A089841 * A089843 A089844 A089845


KEYWORD

nonn


AUTHOR

Antti Karttunen, Dec 05 2003


STATUS

approved



