login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089708 a(1) = 1, a(2) = 2, a(n) = a(n-1) + d where d is the sum of the absolute differences between all pairs of previous terms. 0
1, 2, 3, 7, 26, 136, 887, 6785, 59116, 576528, 6215729, 73368729, 940718528, 13016462714, 193285275705, 3065510539375, 51713071208774, 924496937994286, 17458742846249615, 347270877144570683, 7256791451501057782 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..21.

FORMULA

a(n) = a(n-1) + sum_{1<=i<j<n} (a(j)-a(i))

a(n) = (n+1)(a(n-1)-a(n-2)) + a(n-3) for n>=5.

Conjecture: a(n) = c n! (1+2/n+(5/2)/n^2+(31/6)/n^3+(317/24)/n^4+O(1/n^5)), where c is about 0.1289432494744. - Dean Hickerson, Nov 15 2003

In closed form, c = BesselJ[3,2] = 0.128943249474402051... - Vaclav Kotesovec, Nov 19 2012

EXAMPLE

26 follows 7 as the sum of the differences of previous terms is (2-1) + (3-1) + (7-1) + (3-2) + (7-2) + (7-3) = 19 and 7+19 = 26.

MATHEMATICA

a[1]=1; a[2]=2; a[3]=3; a[4]=7; a[n_] := a[n]=(n+1)(a[n-1]-a[n-2])+a[n-3]

CROSSREFS

Sequence in context: A274692 A308114 A092983 * A107881 A128001 A264829

Adjacent sequences:  A089705 A089706 A089707 * A089709 A089710 A089711

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Nov 14 2003

EXTENSIONS

Edited by Dean Hickerson and Ray Chandler, Nov 15 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 18:34 EDT 2019. Contains 323534 sequences. (Running on oeis4.)