login
A089651
Partial sums of the sequence : a(1)=1, a(1), a(1), a(1), a(1), a(2), a(2), a(2), a(2), a(3), a(3), a(3), a(3), a(4), ... each term (not a(1)) repeated 4 times.
2
1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 25, 29, 33, 37, 41, 46, 51, 56, 61, 68, 75, 82, 89, 98, 107, 116, 125, 136, 147, 158, 169, 182, 195, 208, 221, 237, 253, 269, 285, 304, 323, 342, 361, 383, 405, 427, 449, 474, 499, 524, 549, 578, 607, 636, 665, 698, 731
OFFSET
1,2
LINKS
FORMULA
a(n) = a(n-1) + a(floor((n+2)/4)) with a(1)=1. - Alois P. Heinz, Feb 24 2023
MAPLE
a:= proc(n) a(n):= `if`(n=1, 1, a(n-1)+a(iquo(n+2, 4))) end:
seq(a(n), n=1..60); # Alois P. Heinz, Feb 24 2023
CROSSREFS
Row k=4 of A089606.
Sequence in context: A050198 A158923 A008740 * A063487 A253063 A081998
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Jan 02 2004
STATUS
approved