

A089599


G.f.: (1+x^5+x^7+x^8+x^10+x^15)/((1x^2)(1x^3)(1x^4)(1x^6)^2(1x^9)).


5



1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 13, 15, 23, 24, 35, 40, 52, 60, 79, 87, 112, 127, 155, 177, 216, 240, 290, 326, 382, 430, 503, 557, 648, 720, 822, 914, 1041, 1144, 1298, 1428, 1600, 1760, 1967, 2146, 2392, 2609, 2882, 3142, 3463, 3752, 4127, 4468, 4882, 5282, 5760, 6202
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Poincaré series [or Poincare series] (or Molien series) for (P[x_0, x_1] ⊗ P[x_0, x_1] ⊗ P[x_0, x_1] )^(S_3).


REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, SpringerVerlag, 2nd. ed., 2004; p. 200.


LINKS

Ray Chandler, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 1, 1, 1).


FORMULA

G.f.: (1x+x^5x^9+x^10)/((1x)^2*(1x^2)*(1x^4)*(1x^6)*(1x^9)*(1+x+x^2)). See also the NAME.  Wolfdieter Lang, Mar 19 2014


PROG

(PARI) Vec((1+x^5+x^7+x^8+x^10+x^15)/((1x^2)*(1x^3)*(1x^4)*(1x^6)^2*(1x^9)) + O(x^100)) \\ Michel Marcus, Mar 19 2014


CROSSREFS

Cf. A082146, A091434, A091726, A091769.
Sequence in context: A101085 A088880 A008818 * A206556 A127683 A127686
Adjacent sequences: A089596 A089597 A089598 * A089600 A089601 A089602


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 31 2003


STATUS

approved



