%I #13 Sep 23 2019 09:43:24
%S 1,2,8,22,69,182
%N Number of arborescent (stellar-rational or prysmatic-rational) knots and links.
%D Conway, J. (1970) An enumeration of knots and links and some of their related properties, in Computational Problems in Abstract Algebra, Proc. Conf. Oxford 1967 (Ed. J. Leech), 329-358, Pergamon Press, New York.
%H A. Caudron, <a href="http://sites.mathdoc.fr/PMO/PDF/C_CAUDRON_82_04.pdf">Classification des noeuds et des enlacements</a>, Public. Math. d'Orsay 82. Orsay: Univ. Paris Sud, Dept. Math., 1982.
%H Alain Caudron, <a href="/A002863/a002863_3.pdf">Classification des noeuds et des enlacements (Thèse et additifs)</a>, Univ. Paris-Sud, 1989 [Scanned copy, included with permission] Contains additional material.
%H S. V. Jablan, <a href="http://www.mi.sanu.ac.rs/vismath/sl/">Ordering Knots</a>
%H S. V. Jablan and Radmila Sazdanovic, <a href="http://www.mi.sanu.ac.rs/vismath/linknot/">LinKnot</a>
%e E.g. 2,2,2 for n=6, 3,2,2; 2 1,2,2 for n=7,
%e 2,2,2,2; 3,3,2; 2 1,3,2; 2 1,2 1,2; 4,2,2; 3 1,2,2; 2 2,2,2; 2 1 1,2,2 for n=8, etc. In that list, the pretzel knots and links are included as well.
%K nonn,more
%O 6,2
%A Slavik Jablan and Radmila Sazdanovic, Jan 03 2004