%I #6 Mar 30 2012 18:36:39
%S 1,2,9,66,680,9054,147811,2855574,63656423,1607072112,45294892304,
%T 1409197189256,47954491442089,1771493331491354,70590010219153189,
%U 3017771375030039066,137763757493141082536,6688261925293875095950
%N Equals the self-convolution of A089470 and also the hyperbinomial transform of A089470.
%C See A088956 for the definition of the hyperbinomial transform.
%F a(n) = sum(k=1, n, A089470(k)*A089470(n-k)); a(n) = sum(k=0, n, (n-k+1)^(n-k-1)*binomial(n, k)*A089470(k)).
%e The self-convolution of A089470 at n=4: a(4) = 680 = 303*1+29*1+4*4+1*29+1*303 and equals the hyperbinomial transform of A089470 at n=4: a(4) = 680 = 125*1+64*1+18*4+4*29+1*303.
%Y Cf. A089470, A088956.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Nov 07 2003