%I #5 Mar 30 2012 18:36:39
%S 1,1,4,29,303,4108,68165,1334403,30056112,764920823,21694511367,
%T 678288426792,23173084581845,858785085529061,34311202499100416,
%U 1470080434980994825,67236889676684657943,3269565144147886318168
%N Self-convolution of this sequence is equal to its hyperbinomial transform and results in A089471.
%C See A088956 for the definition of the hyperbinomial transform.
%F A089471(n) = sum(k=1, n, a(k)*a(n-k)); A089471(n) = sum(k=0, n, (n-k+1)^(n-k-1)*binomial(n, k)*a(k)).
%e The self-convolution at n=4: 303*1+29*1+4*4+1*29+1*303 = 680 = A089471(4) and equals the hyperbinomial transform at n=4: 125*1+64*1+18*4+4*29+1*303 = 680 = A089471(4).
%Y Cf. A089471, A088956.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 07 2003