login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089357 a(n) = 2^(6*n). 8

%I

%S 1,64,4096,262144,16777216,1073741824,68719476736,4398046511104,

%T 281474976710656,18014398509481984,1152921504606846976,

%U 73786976294838206464,4722366482869645213696,302231454903657293676544,19342813113834066795298816

%N a(n) = 2^(6*n).

%C For n > 0, numbers M such that a(n) is the highest power of 2 in the Collatz (3x+1) iteration are given by 2^k*(a(n)-1)/3 for any k >= 0. Example: For n = 1, the numbers such that 64 is the highest power of 2 in the Collatz (3x+1) iteration are given by 2^k*(64-1)/3 = 21*2^k for any k >= 0. See A008908 for more information on the Collatz (3x+1) iteration. - _Derek Orr_, Sep 22 2014

%C Additive digital root of a(n) = 1. - _Miquel Cerda_, Jul 02 2016

%H Vincenzo Librandi, <a href="/A089357/b089357.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (64).

%F G.f.: 1/(1-64*x). - _Philippe Deléham_, Nov 24 2008

%F a(n) = 63*a(n-1) + 64^(n-1), a(0)=1. - _Vincenzo Librandi_, Jun 07 2011

%F E.g.f.: exp(64*x). - _Ilya Gutkovskiy_, Jul 02 2016

%F a(n) = A000079(A008588(n)). - _Wesley Ivan Hurt_, Jul 02 2016

%F a(n) = 64*a(n-1). - _Miquel Cerda_, Oct 27 2016

%p seq(2^(6*n), n=0..14); # _Nathaniel Johnston_, Jun 26 2011

%t 2^(6Range[0,20]) (* or *) NestList[64#&,1,20] (* _Harvey P. Dale_, Sep 28 2011 *)

%o (MAGMA) [2^(6*n): n in [0..20]]; // _Vincenzo Librandi_, Jun 07 2011

%o (Maxima) makelist(2^(6*n),n,0,20); /* _Martin Ettl_, Nov 12 2012 */

%o (PARI) a(n)=64^n \\ _Charles R Greathouse IV_, Jul 02 2016

%Y Cf. A000079, A000302, A001018, A001025, A008588, A008908, A009976.

%K nonn,easy

%O 0,2

%A Douglas Winston (douglas.winston(AT)srupc.com), Dec 26 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 22:10 EDT 2019. Contains 328373 sequences. (Running on oeis4.)