login
Maximum prime required in the representation of the square of the n-th prime A000040(n) by a signed sum of squares of distinct other primes minimizing the largest prime used in the sum.
1

%I #7 Mar 31 2012 13:20:51

%S 29,37,19,19,19,19,19,17,19,19,19,23,29,29,29,31,37,37,37,41,41,43,43,

%T 43,47,47,53,53,53,53,59,61,61,61,67,67,67,71,71,71,73,73,79,79,79,79,

%U 83,89,89,89,89,97,97,97,101,101,101,101,103,103,103,103,107,107,109

%N Maximum prime required in the representation of the square of the n-th prime A000040(n) by a signed sum of squares of distinct other primes minimizing the largest prime used in the sum.

%H T. Lassila, H. Pfoertner et al., <a href="http://groups.google.com/group/sci.math/browse_thread/thread/78e4c851ebdb9280/d8a1aed3599aefe8">Sum of unique prime squares?</a> Thread in NG sci.math, Oct 21 2003.

%e a(1)=29: 2^2 = 4 = -29^2 + 19^2 + 17^2 + 11^2 + 7^2 + 5^2

%e a(2)=37: 3^2 = 9 = -37^2 + 23^2 + 19^2 + 17^2 + 11^2 + 7^2 + 5^2 + 2^2

%e a(3)=19: 5^2 = 25 = -19^2 + 17^2 + 13^2 - 11^2 + 7^2

%e a(4)=19: 7^2 = 49 = -19^2 + 17^2 + 11^2

%Y Cf. A089294 representation of n by distinct squares of primes, A089297 representation of (n-th prime)^2 with minimal number of terms.

%K nonn

%O 1,1

%A _Hugo Pfoertner_, Nov 18 2003

%E More terms from _David Wasserman_, Sep 01 2005