login
A089273
Fifth column (k=6) of array A078739(n,k) ((2,2)-generalized Stirling2).
2
1, 188, 12052, 540080, 20447056, 706827968, 23178048832, 736079932160, 22912552596736, 704164858293248, 21462936995648512, 650674662791229440, 19656291799888777216, 592413643343696150528, 17826953303927872110592
OFFSET
0,2
COMMENTS
The numerator of the g.f. is the m=3 row polynomial of the triangle A089275.
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003), 198-205.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Index entries for linear recurrences with constant coefficients, signature (70, -1708, 17544, -72000, 86400).
FORMULA
G.f.: (1+118*x+ 600*x^2)/Product_{p=1..5} (1-(p+1)*p*x).
a(n) = (2^n - 36*6^n + 36*6*12^n - 400*20^n + 75*3*30^n)/6 = d(n) + 118*d(n-1) + 600*d(n-2), n>=2, with d(n) := A089274(n)= A071951(n+5, 5)= (16875*30^n - 20000*20^n + 6048*12^n - 405*6^n + 2*2^n)/2520.
MAPLE
a:= n-> (Matrix([[12052, 188, 1, 0, 0]]). Matrix(5, (i, j)-> if (i=j-1) then 1 elif j=1 then [70, -1708, 17544, -72000, 86400][i] else 0 fi)^n)[1, 3]: seq(a(n), n=0..30); # Alois P. Heinz, Aug 14 2008
MATHEMATICA
LinearRecurrence[{70, -1708, 17544, -72000, 86400}, {1, 188, 12052, 540080, 20447056}, 15] (* Jean-François Alcover, Feb 28 2020 *)
CROSSREFS
Cf. A089272, A071951 (Legendre-Stirling triangle).
Sequence in context: A185241 A211818 A204071 * A035832 A065612 A088264
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 07 2003
STATUS
approved