login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089233 Number of coprime pairs of divisors >1 of n. 9
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 6, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 6, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 11, 0, 1, 2, 0, 1, 6, 0, 2, 1, 6, 0, 6, 0, 1, 2, 2, 1, 6, 0, 4, 0, 1, 0, 11, 1, 1, 1, 3, 0, 11, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 6, 0, 3, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Also the number of divisors of n^2 which do not divide n and which are less than n. See link for proof. -  Andrew Weimholt, Dec 06 2009

a(A000961(n))=0; a(A006881(n))=1; a(A054753(n))=2; a(A065036(n))=3. - Robert G. Wilson v, Dec 16 2009

First occurrence of k beginning with 0: 1, 6, 12, 24, 36, 96, 30, 384, 144, 216, 288, 60, 432, 24576, 1152, 864, 120, 393216, 1728, 1572864, 180, 240, 18432, 25165824, 5184, 210, 480, 13824, 10368, 360, 15552, 960, 20736, 55296, 1179648, 31104, 900, ..., . Except for 1, each is divisible by 6. Also the first occurrence of k must occur at or before 6*2^(n-1). - Robert G. Wilson v, Dec 16 2009

a(3*2^n) = n; if x=2^n, then a(x)=a(2x); and if x is not a power of two, then a(x)=y then a(2x)>y. - Robert G. Wilson v, Dec 16 2009

a(n) = 0 iff n is a prime power. - Franklin T. Adams-Watters, Aug 20 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Andrew Weimholt, Proof of an alternative characterization

FORMULA

a(n) = #{(x,y): 1<x<y, x|n, y|n and GCD(x,y)=1}.

a(n) = A063647(n) - A000005(n) + 1

a(n) = A018892(n) - A000005(n). - Franklin T. Adams-Watters, Aug 20 2013

MATHEMATICA

f[n_] := (DivisorSigma[0, n^2] - 1)/2 - DivisorSigma[0, n] + 1; Array[f, 104] (* Robert G. Wilson v, Dec 16 2009 *)

PROG

(Haskell)

a089233 n = sum $ [a063524 $ gcd u v | let ds = tail $ a027750_row n,

                                       u <- ds, v <- dropWhile (<= u) ds]

-- Reinhard Zumkeller, Sep 04 2013

(PARI) a(n) = (numdiv(n^2)-1)/2 - numdiv(n) + 1; \\ Michel Marcus, Feb 17 2016

CROSSREFS

Sequence in context: A242444 A236441 A281116 * A066620 A219023 A025427

Adjacent sequences:  A089230 A089231 A089232 * A089234 A089235 A089236

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Dec 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 07:13 EDT 2017. Contains 290635 sequences.