login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089233 Number of coprime pairs of divisors >1 of n. 9
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 6, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 6, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 11, 0, 1, 2, 0, 1, 6, 0, 2, 1, 6, 0, 6, 0, 1, 2, 2, 1, 6, 0, 4, 0, 1, 0, 11, 1, 1, 1, 3, 0, 11, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 6, 0, 3, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Also the number of divisors of n^2 which do not divide n and which are less than n. See link for proof. -  Andrew Weimholt, Dec 06 2009

a(A000961(n))=0; a(A006881(n))=1; a(A054753(n))=2; a(A065036(n))=3. - Robert G. Wilson v, Dec 16 2009

First occurrence of k beginning with 0: 1, 6, 12, 24, 36, 96, 30, 384, 144, 216, 288, 60, 432, 24576, 1152, 864, 120, 393216, 1728, 1572864, 180, 240, 18432, 25165824, 5184, 210, 480, 13824, 10368, 360, 15552, 960, 20736, 55296, 1179648, 31104, 900, ..., . Except for 1, each is divisible by 6. Also the first occurrence of k must occur at or before 6*2^(n-1). - Robert G. Wilson v, Dec 16 2009

a(3*2^n) = n; if x=2^n, then a(x)=a(2x); and if x is not a power of two, then a(x)=y then a(2x)>y. - Robert G. Wilson v, Dec 16 2009

a(n) = 0 iff n is a prime power. - Franklin T. Adams-Watters, Aug 20 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Andrew Weimholt, Proof of an alternative characterization

FORMULA

a(n) = #{(x,y): 1<x<y, x|n, y|n and GCD(x,y)=1}.

a(n) = A063647(n) - A000005(n) + 1

a(n) = A018892(n) - A000005(n). - Franklin T. Adams-Watters, Aug 20 2013

MATHEMATICA

f[n_] := (DivisorSigma[0, n^2] - 1)/2 - DivisorSigma[0, n] + 1; Array[f, 104] (* Robert G. Wilson v, Dec 16 2009 *)

PROG

(Haskell)

a089233 n = sum $ [a063524 $ gcd u v | let ds = tail $ a027750_row n,

                                       u <- ds, v <- dropWhile (<= u) ds]

-- Reinhard Zumkeller, Sep 04 2013

(PARI) a(n) = (numdiv(n^2)-1)/2 - numdiv(n) + 1; \\ Michel Marcus, Feb 17 2016

CROSSREFS

Sequence in context: A242444 A236441 A281116 * A066620 A219023 A025427

Adjacent sequences:  A089230 A089231 A089232 * A089234 A089235 A089236

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Dec 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 24 00:27 EST 2017. Contains 295164 sequences.